From June 1998 to July 1999, 370 lots of oysters in the shell were sampled at 275 different establishments (71%, restaurants or oyster bars; 27%, retail seafood markets: and 2%, wholesale seafood markets) in coastal and inland markets throughout the United States. The oysters were harvested from the Gulf (49%). Pacific (14%), Mid-Atlantic (18%), and North Atlantic (11%) Coasts of the United States and from Canada (8%). Densities of Vibrio vulnificus and Vibrio parahaemolyticus were determined using a modification of the most probable number (MPN) techniques described in the Food and Drug Administration's Bacteriological Analytical Manual. DNA probes and enzyme immunoassay were used to identify suspect isolates and to determine the presence of the thermostable direct hemolysin gene associated with pathogenicity of V. parahaemolyticus. Densities of both V. vulnifcus and V. parahaemolyticus in market oysters from all harvest regions followed a seasonal distribution, with highest densities in the summer. Highest densities of both organisms were observed in oysters harvested from the Gulf Coast, where densities often exceeded 10,000 MPN/g. The majority (78%) of lots harvested in the North Atlantic, Pacific, and Canadian Coasts had V. vulnificus densities below the detectable level of 0.2 MPN/g; none exceeded 100 MPN/g. V. parahaemolyticus densities were greater than those of V. vulnificus in lots from these same areas, with some lots exceeding 1,000 MPN/g for V. parahaemolyticus. Some lots from the Mid-Atlantic states exceeded 10,000 MPN/g for both V. vulnificus and V. parahaemolyicus. Overall, there was a significant correlation between V. vulificus and V. parahaemolyticus densities (r = 0.72, n = 202, P < 0.0001), but neither density correlated with salinity. Storage time significantly affected the V. vulnificus (10% decrease per day) and V. parahaemolyticus (7% decrease per day) densities in market oysters. The thermostable direct hemolysin gene associated with V parahaemolyticus virulence was detected in 9 of 3,429 (0.3%) V. parahaemolyticus cultures and in 8 of 198 (4.0%) lots of oysters. These data can be used to estimate the exposure of raw oyster consumers to V. vulnificus and V. parahaemolyticus.

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028x-65.1.79DOI Listing

Publication Analysis

Top Keywords

parahaemolyticus densities
12
parahaemolyticus
11
densities
9
vibrio vulnificus
8
vulnificus vibrio
8
vibrio parahaemolyticus
8
june 1998
8
1998 july
8
july 1999
8
lots oysters
8

Similar Publications

The alarming global rise in antibiotic resistance, driven by the widespread overuse of traditional antibiotics, has created an urgent demand for new antimicrobial solutions. This study presents zinc oxide (ZnO) nanorods as a potential nano-antibiotic agent. ZnO nanorods, with a 2:3 aspect ratio, were synthesized using an efficient one-step hydrothermal method at a low temperature of 100°C, reducing the synthesis time to just 5 hours.

View Article and Find Full Text PDF

Macrobrachium rosenbergii is a highly valuable prawn species in aquaculture due to its current growing demand in the market. However, various bacterial diseases caused by Vibrio parahaemolyticus have been observed to induce mortality in larval, juvenile, and adult stages of M. rosenbergii.

View Article and Find Full Text PDF

Lactobacillus acidophilus is a probiotic commonly used in aquaculture to enhance the growth and immune system of aquatic species through the synthesis of various enzymes, and antimicrobial compounds like lactic acid. Traditional method of growing L. acidophilus involes using the De Man-Rogosa-Sharpe (MRS) medium.

View Article and Find Full Text PDF

Vibrio parahaemolyticus (V. parahaemolyticus) stands as the predominant etiological agent responsible for gastroenteritis associated with the consumption of seafood. Cyclic di-guanosine monophosphate (c-di-GMP), a secondary messenger in bacteria, controls multiple bacterial behaviors including pathogenesis, the development of biofilms, and motility.

View Article and Find Full Text PDF

Aiming to investigate the impact of different stocking densities on the ability of Pacific white shrimp () to utilize (CHL), a 3 × 2 factorial design stocking experiment was used in this study. Specifically, shrimp was fed with two dietary protein sources (fishmeal [FM] and CHL) at low (LSD; 100 per m), medium (MSD; 200 per m) and high (HSD; 300 per m) stocking densities for 8 weeks. The growth performance and resistance to (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!