BARD1 (BRCA1-associated RING domain) was identified by yeast two-hybrid screening as a protein interacting with BRCA1. Somatic and germline mutations of BARD1 have been detected in sporadic breast, ovarian, and endometrial cancers. The present study represents the first description of BARD1 germline mutations in hereditary breast and breast/ovarian cancer patients. We analyzed the BARD1 gene in 40 families with hereditary breast and breast/ovarian cancer, tested negative for BRCA1 and BRCA2 mutations. A mutational analysis by PCR-SSCP on the coding region and the exon-intron splice boundaries of the BARD1 gene yielded four different germline mutations. A group of 20 patients diagnosed with sporadic breast cancer below the age of 40 was also examined and only one germline mutation was found. A study of loss of heterozygosity at the BARD1 locus in neoplastic tissues from patients with BARD1 germline mutations was carried out. In all cases, we were unable to find any evidence for allelic deletions. The involvement of BARD1 mutations in the susceptibility to hereditary breast and breast/ovarian cancer is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/gcc.1223 | DOI Listing |
Acta Oncol
January 2025
Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
Background And Purpose: Despite advancements in genetic testing and expanded eligibility criteria, underutilisation of germline testing for pathogenic variants in BRCA1 and BRCA2 (BRCA) remains evident among breast cancer (BC) patients. This observational cohort study presents real-world data on BRCA testing within the context of clinical practice challenges, including incomplete family history and under-referral.
Material And Methods: From the Danish Breast Cancer Group (DBCG) clinical database, we included 65,117 females with unilateral stage I-III BC diagnosed in 2000-2017, of whom 9,125 (14%) were BRCA tested.
Genetics
January 2025
Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
In the presence of stressful environments, the SKN-1 cytoprotective transcription factor is activated to induce the expression of gene targets that can restore homeostasis. However, chronic activation of SKN-1 results in diminished health and a reduction of lifespan. Here we demonstrate the necessity of modulating SKN-1 activity to maintain the longevity-promoting effects associated with genetic mutations that impair daf-2/insulin receptor signaling, the eat-2 model of dietary restriction, and glp-1-dependent loss of germ cell proliferation.
View Article and Find Full Text PDFGenes Chromosomes Cancer
January 2025
Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
Infantile myofibromatosis (IM) comprises a wide clinical spectrum, ranging from solitary or multicentric lesions to generalized life-threatening forms. IM is mostly linked to germline or somatic heterozygous mutations in the PDGFRβ tyrosine kinase, encoded by the PDGFRB gene. Treatments for IM range from wait and see approach to systemic chemotherapy, according to the clinical context.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Kapadi, Inc., Raleigh, NC, United States.
Gene therapy has long been a cornerstone in the treatment of rare diseases and genetic disorders, offering targeted solutions to conditions once considered untreatable. As the field advances, its transformative potential is now expanding into oncology, where personalized therapies address the genetic and immune-related complexities of cancer. This review highlights innovative therapeutic strategies, including gene replacement, gene silencing, oncolytic virotherapy, CAR-T cell therapy, and CRISPR-Cas9 gene editing, with a focus on their application in both hematologic malignancies and solid tumors.
View Article and Find Full Text PDFCurr Gene Ther
January 2025
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
The evolution of genetic exploration tools, from laborious methods like radiationinduced mutations to the transformative CRISPR-Cas9 system, has fundamentally reshaped genetic research and gene editing capabilities. This journey, initiated by foundational techniques such as ZFNs and TALENs and culminating in the groundbreaking work of Doudna and Charpentier in 2012, has ushered in an era of precise DNA alteration and profound insights into gene functions. The CRISPR/Cas9 system uses the Cas9 enzyme and guides RNA (gRNA) to precisely target and cleave DNA, with subsequent repair via error-prone NHEJ or precise HDR, enabling versatile gene editing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!