Ploidy differences between hormone- and chemical carcinogen-induced rat mammary neoplasms: comparison to invasive human ductal breast cancer.

Mol Carcinog

Hormonal Carcinogenesis Laboratory, Division of Etiology and Prevention of Hormonal Cancers, Kansas Cancer Institute, Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160-7417, USA.

Published: January 2002

To ascertain differences between solely hormone- and chemical carcinogen-induced murine mammary gland tumors (MGTs), a direct comparison of their ploidy status was assessed. Nuclear image cytometry (NIC) was used to evaluate ploidy in ductal carcinoma in situ (DCIS) and MGTs induced solely by 17beta-estradiol (E(2)) in female A-strain Copenhagen Irish hooded gene rats (ACI) and E(2) plus testosterone propionate in male Noble rats. These results were compared to ploidy data from primary MGTs induced by two synthetic carcinogens, 7,12-dimethylbenz[a]antracene and nitrosomethylurea in female Brown Lewis Norway rats and an environmental carcinogen, 6-nitrochrysene, in female Sprague-Dawley rats. Both DCIS and primary MGTs induced solely by hormones were highly aneuploid (> 84%), whereas MGTs induced by either synthetic or environmental carcinogens were primarily diploid (> 85%). Examination of 76 metaphase plates obtained from eight individual E(2)-induced ACI female rat MGTs revealed the following consistent chromosome alterations: gains in chromosomes 7, 11, 12, 13, 19, and 20 and loss of chromosome 12. On Southern blot analysis, six of nine ACI female rat primary E(2)-induced MGTs (66%) exhibited amplified copy numbers (range: 3.4-6.9 copies) of the c-myc gene. Fluorescence in situ hybridization (FISH) analysis of these MGTs revealed specific fluorescent hybridization signals for c-myc (7q33) on all three homologs of a trisomy in chromosome 7. NIC analysis of 140 successive nonfamilial sporadic invasive human ductal breast cancers (BCs) showed an aneuploid frequency of 61%, while 31 DCISs revealed a 71% aneuploid frequency. These results clearly demonstrate that the female ACI rat E(2)-induced MGTs more closely resemble invasive human DCIS and ductal BC in two pertinent aspects: they are highly aneuploid compared with chemical carcinogen-induced MGTs and exhibit a high frequency of c-myc amplification.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.10022DOI Listing

Publication Analysis

Top Keywords

mgts induced
16
chemical carcinogen-induced
12
invasive human
12
mgts
10
hormone- chemical
8
human ductal
8
ductal breast
8
induced solely
8
primary mgts
8
induced synthetic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!