The Gordian knot of anatomy has been the architectural arrangement of ventricular muscle mass, which may have finally become understood. The description of Francisco Torrent-Guasp's model of the helical heart is presented, which includes the cardiac structures that produce 2 simple loops that start at the pulmonary artery and end in the aorta. An unscrolled ventricular band is shown, achieved by blunt dissection that extends between the points of origin of the right ventricle, at the pulmonary artery root, to termination at the aortic root, in the left ventricle. These components include a spiral horizontal basal loop that surrounds the right and left ventricular cavities, and changes direction to cause a second spiral, produced by almost vertically oriented fibers, giving rise to the helical configuration of the ventricular myocardial band. These anatomic structures are successively activated, as with a peristaltic wave, starting at the right ventricle (just below the pulmonary artery) and progressing toward the aorta to produce a sequence of narrowing, caused by the basal loop contraction, shortening (related predominantly to the descendant segment contraction), lengthening (produced by the ascendant segment contraction), and widening, as a consequence of several factors that act during ventricular myocardium relaxation. These sequences control the ventricular events responsible for ejection to empty and suction to fill. These mechanical interactions of structure and function are defined in relation to chronologic location of the successive cardiac functional events in the aortic, left ventricular, and left atrial recordings.

Download full-text PDF

Source
http://dx.doi.org/10.1053/stcs.2001.29953DOI Listing

Publication Analysis

Top Keywords

pulmonary artery
12
structure function
8
helical heart
8
ventricle pulmonary
8
basal loop
8
left ventricular
8
segment contraction
8
ventricular
7
function helical
4
heart buttress
4

Similar Publications

Background: Anomalous systemic artery to the left lower lobe (ASALLL) is a rare congenital anomaly. The primary symptoms include hemoptysis and lung infection, though some patients may remain asymptomatic. Currently, there is no consensus on the indications for treatment or the optimal choice of therapy for this condition.

View Article and Find Full Text PDF

Background: Pulmonary artery sling (PAS) is a rare congenital anomaly where the left pulmonary artery (LPA) branches from the right pulmonary artery, compressing the trachea and esophagus and frequently leading to respiratory distress in infants. Surgical intervention, such as LPA reimplantation or translocation, is crucial to relieve airway compression and restore normal pulmonary function.

Case Presentation: This report highlights varied LPA anatomies, including a unique case of an anomalous LPA without true sling formation but causing tracheal compression, alongside two typical PAS cases.

View Article and Find Full Text PDF

Targeting Fibroblast Activation Protein for Molecular Imaging of Fibrotic Remodeling in Pulmonary Arterial Hypertension.

J Nucl Med

January 2025

Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China; and

The purpose of this study was to investigate the feasibility of using F-labeled fibroblast activation protein inhibitor (FAPI) PET/CT in assessing the fibrotic remodeling of the pulmonary artery (PA) and the right ventricle (RV) in pulmonary arterial hypertension (PAH). In a rat model of monocrotaline-induced PAH, rats were euthanized at different time points for tissue analysis (fibroblast activation protein immunofluorescence and Masson's trichrome staining) after completing F-FAPI PET/CT and hemodynamic measurements. Thirty-eight PAH patients were enrolled to participate in F-FAPI PET/CT imaging, with right heart catheterization and echocardiography performed within 1 wk to assess pulmonary hemodynamics and cardiac function.

View Article and Find Full Text PDF

Predictive value of epicardial adipose tissue volume for early detection of left ventricular dysfunction in patients suspected of coronary artery disease.

Clin Radiol

November 2024

Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China. Electronic address:

Aim: To investigate the relationship between epicardial adipose tissue (EAT) and myocardial strain and the severity of coronary artery disease (CAD), and to evaluate the predictive value of EAT parameters in early left ventricular (LV) diastolic dysfunction.

Materials And Methods: One hundred seventy patients with suspected CAD who underwent both coronary computed tomography angiography and echocardiography were enrolled in 2020. LV global strains were calculated using commercial software.

View Article and Find Full Text PDF

Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!