Objective: To assess the effectiveness of bioresorbable Seprafilm membrane in preventing abdominal adhesions in a prospective clinical randomized multicenter trial.
Summary Background Data: Adhesions occur frequently after abdominal operations and are a common cause of bowel obstruction, chronic abdominal pain, and infertility. To reduce the formation of adhesions, a mechanical barrier composed of hyaluronic acid and carboxymethylcellulose was developed, preventing adherence of tissues after abdominal surgery.
Methods: Between April 1996 and September 1998, all patients requiring a Hartmann procedure for sigmoid diverticulitis or obstructed rectosigmoid were randomized to either intraperitoneal placement of the antiadhesions membrane under the midline during laparotomy and in the pelvis, or as a control. Direct visual evaluation of the incidence and severity of adhesions was performed laparoscopically at second-stage surgery for restoration of the continuity of the colon.
Results: A total of 71 patients were randomized; of these, 42 could be evaluated. The incidence of adhesions did not differ significantly between the two groups, but the severity of adhesions was significantly reduced in the Seprafilm group both for the midline incision and for the pelvic area. Complications occurred in similar numbers in both groups.
Conclusions: Seprafilm antiadhesions membrane appears effective in reducing the severity of postoperative adhesions after major abdominal surgery, although the incidence of adhesions was not diminished. The authors recommend using Seprafilm when relaparotomy or second-look intervention is planned. Long-term studies are needed to assess the cost-effectiveness and value of Seprafilm in preventing bowel obstruction, chronic abdominal pain, and infertility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1422414 | PMC |
http://dx.doi.org/10.1097/00000658-200202000-00006 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, 401336 Chongqing, China.
Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.
Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.
Front Biosci (Landmark Ed)
January 2025
Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.
Sulfatides or 3-O-sulfogalactosylceramide are negatively charged sulfated glycosphingolipids abundant in the brain and kidneys and play crucial roles in nerve impulse conduction and urinary pH regulation. Sulfatides are present in the liver, specifically in the biliary tract. Sulfatides are self-lipid antigens presented by cholangiocytes to activate cluster of differentiation 1d (CD1d)-restricted type II natural killer T (NKT) cells.
View Article and Find Full Text PDFPharmaceutics
January 2025
Programa de Posgrado en Odontología, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jose 11501-2060, Costa Rica.
Objectives: This study aimed to synthesize polylactic acid (PLA) nanofibrillar scaffolds loaded with ibuprofen (IBU) using electrospinning (ES) and air-jet spinning (AJS). The scaffolds were evaluated for their physicochemical properties, drug release profiles, and biocompatibility to assess their potential for local analgesic applications.
Methods: Solutions of 10% (/) PLA combined with IBU at concentrations of 10%, 20%, and 30% were processed into nanofibrillar membranes using ES and AJS.
Pharmaceutics
January 2025
Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201300, China.
The application of light-responsive nanomaterials (LRNs) in bone tissue engineering shows broad prospects, especially in promoting bone healing and regeneration. With a deeper understanding of the mechanisms of bone defects and healing disorders, LRNs are receiving increasing attention due to their non-invasive, controllable, and efficient properties. These materials can regulate cellular biological reactions and promote bone cell adhesion, proliferation, and differentiation by absorbing specific wavelengths of light and converting them into physical and chemical signals.
View Article and Find Full Text PDFPharmaceutics
January 2025
University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!