Characterization of pseudorabies virus glycoprotein C attachment to heparan sulfate proteoglycans.

J Gen Virol

Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Avenue, Room 201, Memphis, TN 38163, USA1.

Published: February 2002

Pseudorabies virus first attaches to cells through an interaction between the envelope glycoprotein C (gC) and the cell surface heparan sulfate (HS) that is linked to proteoglycans (HSPGs). The HS-binding domain of gC is composed of three discrete heparin-binding domains (HBDs), designated HBD1, -2 and -3 for their proximity to the amino terminus of gC. Each HBD can independently mediate virus attachment to HS, yet each also exhibits a distinct binding preference for differentially sulfated derivatives of heparin. To demonstrate this, affinity columns composed of wild-type gC or mutant gC retaining a single HBD to capture several HSPGs from cultured pig and bovine kidney cells were used. The wild-type gC column bound all of the HSPGs well and, overall, bound more than 90% of the total sample applied to the column. Columns composed of either HBD2 or -3 bound intermediate amounts (40%) of the total sample applied, while the HBD1 column bound low amounts of HSPGs. HBD2 and -3 columns did not uniformly bind all of the HSPGs from bovine kidney cells, but the same HSPGs were bound with equal efficiency on each column. Thus, despite their different preferences for sulfation patterns on HS side-chains, HBD2 and -3 appear to bind the same proteoglycan cores. These results established a hierarchy of HBD2=HBD3>HBD1 in importance for HSPG binding. These in vitro-binding results correlated with the attachment phenotype of virus strains expressing gC with a single HBD in their envelopes.

Download full-text PDF

Source
http://dx.doi.org/10.1099/0022-1317-83-2-301DOI Listing

Publication Analysis

Top Keywords

pseudorabies virus
8
heparan sulfate
8
columns composed
8
single hbd
8
bovine kidney
8
kidney cells
8
column bound
8
total sample
8
sample applied
8
hspgs
6

Similar Publications

Pseudorabies virus inhibits the unfolded protein response for viral replication during the late stages of infection.

Vet Microbiol

December 2024

National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.

Pseudorabies virus (PRV) poses a significant threat to the global swine breeding industry and public health, but how the virus transverses the host defense systems for efficient viral replication and pathogenesis remains unclear. Here, we report that PRV could inhibit the unfolded protein response (UPR), a critical component of host innate immunity against viral infection, to promote virus replication during the late infection stages. PERK was shown phosphorylated and active in PRV-infected cells, but the subsequent events were suppressed post virus infection, such as eIF2α phosphorylation, ATF4 expression, and the formation of stress granules (SGs).

View Article and Find Full Text PDF

Pseudorabies virus (PRV) is one of the most important infectious diseases which leads to significant economic losses in the global swine industry. The gE-deleted vaccine is widely used to prevent susceptible pigs from PRV infection. There is no report of the differentiation of PRV wild strain and vaccine strain by recombinase polymerase amplification (RPA) coupled with a lateral flow dipstick (LFD) method.

View Article and Find Full Text PDF

Development of a capsid protein-based ELISA for the detection of PCV2 antibodies in swine serum.

Pol J Vet Sci

December 2024

Key Laboratory of Animal Pathogen and Biosafety Education of the Ministry of Education, Zhengzhou 450000, China.

Porcine circovirus type 2 (PCV2) is the major causative agent of postweaning multisystemic wasting syndrome which leads to significant economic losses in the global swine industry. In China, there is a widespread dissemination of PCV2 infection in the pig population. Serological diagnosis of the disease is considered as an effective control measure.

View Article and Find Full Text PDF

Berbamine inhibits Pseudorabies virus in vitro and in vivo.

Vet Microbiol

December 2024

College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China. Electronic address:

Pseudorabies virus (PRV) is a significant pathogen that causes acute infectious diseases in pigs, resulting in considerable economic losses for the global pig industry. The lack of effective control measures and vaccines against the circulating variants of PRV highlights the pressing need for novel treatment strategies. In this study, a screening of a natural product library identified Berbamine as a promising compound that inhibits PRV replication, with a selectivity index of 17.

View Article and Find Full Text PDF

Optimizing encephalomyocarditis virus VP1 protein assembly on pseudorabies virus envelope via US9 protein anchoring.

Virulence

December 2025

The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.

Live herpesvirus-vectored vaccines are critical in veterinary medicine, but they can sometimes offer insufficient protection due to suboptimal antigen expression or localization. Encephalomyocarditis virus (EMCV) is a significant zoonotic threat, with VP1 protein as a key immunogen on its capsid. To enhance immunogenicity, we explored the use of recombinant pseudorabies virus (rPRV) as a vaccine vector against EMCV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!