Compared to other melon types, Cantaloupe Charentais melons are highly aromatic with a major contribution to the aroma being made by aliphatic and branched esters. Using a transgenic line in which the synthesis of the plant hormone ethylene has been considerably lowered by antisense ACC oxidase mRNA (AS), the aliphatic ester pathway steps at which ethylene exerts its regulatory role were found. The data show that the production of aliphatic esters such as hexyl and butyl acetate was blocked in AS fruit and could be reversed by ethylene. Using fruit discs incubated in the presence of various precursors, the steps at which ester formation was inhibited in AS fruit was shown to be the reduction of fatty acids and aldehydes, the last step of acetyl transfer to alcohols being unaffected. However, treating AS fruit with the ethylene antagonist 1-methylcyclopropene resulted in about 50% inhibition of acetyl transfer activity, indicating that this portion of activity was ethylene-dependent and this was supported by the low residual ethylene concentration of AS fruit discs (around 2 microl l(-1)). In conclusion, the reduction of fatty acids and aldehydes appears essentially to be ethylene-dependent, whilst the last step of alcohol acetylation has ethylene-dependent and ethylene-independent components, probably corresponding to differentially regulated alcohol acetyltransferases.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jexbot/53.367.201DOI Listing

Publication Analysis

Top Keywords

aliphatic ester
8
fruit discs
8
reduction fatty
8
fatty acids
8
acids aldehydes
8
acetyl transfer
8
ethylene
5
fruit
5
role ethylene
4
ethylene biosynthetic
4

Similar Publications

Unconventional fluorescent polymers are attracting increasing attention because of their excellent biocompatibility and wide applications. However, these polymers typically exhibit weak long-wavelength emission. Herein, three novel aliphatic linear polyphosphate esters are prepared via a one-pot polycondensation reaction.

View Article and Find Full Text PDF

Visible-light-induced decarboxylative cyclization.

Org Biomol Chem

December 2024

Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, 24-Parganas (N), Pin-743165, India.

The application of visible light as an energy source provides a new avenue in organic transformation due to its mildness, efficiency and selectivity. In fact, recent years have witnessed remarkable advances in photoinduced decarboxylative coupling reactions involving carboxylic acids and their derivatives. Under appropriate photoredox conditions they undergo single electron transfer (SET), resulting in reactive radicals which can assemble with suitable reaction partners.

View Article and Find Full Text PDF

Pyrazinamide derivatives have been extensively studied for their biological activities, such as anti-tuberculosis activity and antiviral activities. In this work, a continuous-flow system was developed for the synthesis of pyrazinamide derivatives from pyrazine esters and amines (aliphatic amine, benzylamines and morpholine) catalyzed by Lipozyme® TL IM from , which was used for the first time. The reaction parameters including solvent, substrate ratio, reaction temperature and reaction time/flow rate were also studied in detail.

View Article and Find Full Text PDF

Efficient removal of lipophilic compounds from sewage sludge: Comparative evaluation of solvent extraction techniques.

Heliyon

December 2024

Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Kipsalas 6a, Riga, Latvia.

Municipal sewage sludge, a by-product of wastewater treatment plants, presents environmental challenges due to its complex composition. Particular concern is the lipophilic and aliphatic compounds that pose risks to the environment and human health. This study focuses on the efficient removal of those compounds from sewage sludge using several organic solvents (hexane, toluene, chloroform, dichloromethane, acetone, hexane-methanol mixture, ethanol, and methanol) and ionic liquids (ILs) like tetrakis(hydroxymethyl)phosphonium chloride and 1-ethyl-3-methylimidazolium acetate by solvent extraction techniques.

View Article and Find Full Text PDF

The aim of this study was to determine the effects of ripening rate (slow or fast), usage autochthonous starter cultures (control-spontaneous fermentation, GM77, GM92 or GM77 + GM92) and type of fat (beef fat-BF, sheep tail fat-STF and BF+STF) on the volatile compounds of sucuk (a Turkish dry fermented sausage). A total of 74 volatile compounds were identified, including groups of aliphatic hydrocarbons, aldehydes, ketones, alcohols, sulfide compounds, esters, aromatic hydrocarbons, nitrogenous compounds, acids and terpenes in sucuk. Slow ripening resulted in significant increases in the abundance of ethanol, acetic acid, ethyl acetate, acetoin and diacetyl.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!