Using two-hybrid screening, we isolated the integrin cytoplasmic domain-associated protein (ICAP-1), an interactor for the COOH terminal region of the beta1A integrin cytoplasmic domain. To investigate the role of ICAP-1 in integrin-mediated adhesive function, we expressed the full-length molecule in NIH3T3 cells. ICAP-1 expression strongly prevents NIH3T3 cell spreading on extracellular matrix. This inhibition is transient and can be counteracted by coexpression of a constitutively activated mutant of Cdc42, suggesting that ICAP-1 acts upstream of this GTPase. In addition, we found that ICAP-1 binds both to Cdc42 and Rac1 in vitro, and its expression markedly inhibits activation of these GTPases during integrin-mediated cell adhesion to fibronectin as detected by PAK binding assay. In the attempt to define the molecular mechanism of this inhibition, we show that ICAP-1 reduces both the intrinsic and the exchange factor-induced dissociation of GDP from Cdc42; moreover, purified ICAP-1 displaces this GTPase from cellular membranes. Together, these data show for the first time that ICAP-1 regulates Rho family GTPases during integrin-mediated cell matrix adhesion, acting as guanine dissociation inhibitor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2199222 | PMC |
http://dx.doi.org/10.1083/jcb.200108030 | DOI Listing |
Exp Ther Med
February 2025
Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China.
The aim of the present study was to explore the role of ovarian cancer G protein-coupled receptor 1 (OGR1) in osteoclast differentiation and activity induced by extracellular acid. The impact of extracellular acidification on osteoclasts was investigated. Briefly, osteoclasts were generated from RAW 264.
View Article and Find Full Text PDFElife
December 2024
Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany.
S100A8/A9 is an endogenous alarmin secreted by myeloid cells during many acute and chronic inflammatory disorders. Despite increasing evidence of the proinflammatory effects of extracellular S100A8/A9, little is known about its intracellular function. Here, we show that cytosolic S100A8/A9 is indispensable for neutrophil post-arrest modifications during outside-in signaling under flow conditions in vitro and neutrophil recruitment in vivo, independent of its extracellular functions.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Biomedical Sciences, Chubu University, Matsumoto 1200, Kasugai 487-8501, Aichi, Japan.
Extracellular vesicles (EVs) play important roles in intercellular communication in various biological events. In particular, EVs released from cancer cells have attracted special attention. Although it has been reported that cancer-associated glycosphingolipids play important roles in the enhancement of malignant properties of cancer cells, the presence, behavior, and roles of glycosphingolipids in EVs have not been elucidated.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
New Cornerstone Science Laboratory, Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are widely used in industrial and household products, raising serious concerns due to their environmental persistence and mobility. Epidemiological studies have reported potential carcinogenic risks of PFAS based on their widespread occurrence and population exposure. In this study, we observed that perfluorooctanoic acid (PFOA), a common PFAS, functions as a mechanical regulator in lung cancer cells.
View Article and Find Full Text PDFBioessays
January 2025
Faculty of Health & Life Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
The retinal pigment epithelium (RPE) is a specialized epithelium at the back of the eye that carries out a variety of functions essential for visual health. Recent studies have advanced our molecular understanding of one of the major functions of the RPE; phagocytosis of spent photoreceptor outer segments (POS). Notably, a mechanical link, formed between apical integrins bound to extracellular POS and the intracellular actomyosin cytoskeleton, is proposed to drive the internalization of POS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!