Analogues of the 2',6'-dimethyl-L-tyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) pharmacophore were prepared to test the hypothesis that a "spacer" and a third aromatic center in opioid peptides are required to convert a delta-antagonist into ligands with delta-agonist or with mixed delta-antagonist/mu-agonist properties. Potent delta-agonists and bifunctional compounds with high delta- and mu-opioid receptor affinities were obtained by varying the spacer length [none, NH-CH(2), NH-CH(2)-CH(2), Gly-NH-CH(2)] and C-terminal aromatic nucleus [1H-benzimidazole-2-yl, phenyl (Ph) and benzyl groups]. C-terminal modification primarily affected mu-opioid receptor affinities, which increased maximally 1700-fold relative to the prototype delta-antagonist H-Dmt-Tic-NH(2) and differentially modified bioactivity. In the absence of a spacer (1), the analogue exhibited dual delta-agonism (pEC(50), 7.28) and delta-antagonism (pA(2), 7.90). H-Dmt-Tic-NH-CH(2)-1H-benzimidazole-2-yl (Bid) (2) became a highly potent delta-agonist (pEC(50), 9.90), slightly greater than deltorphin C (pEC(50), 9.56), with mu-agonism (pE(50), 7.57), while H-Dmt-Tic-Gly-NH-CH(2)-Bid (4) retained potent delta-antagonism (pA(2), 9.0) but with an order of magnitude less mu-agonism. Similarly, H-Dmt-Tic-Gly-NH-Ph (5) had nearly equivalent high delta-agonism (pEC(50), 8.52) and mu-agonism (pEC(50), 8.59), while H-Dmt-Tic-Gly-NH-CH(2)-Ph (6) whose spacer was longer by a single methylene group exhibited potent delta-antagonism (pA(2), 9.25) and very high mu-agonism (pEC(50), 8.57). These data confirm that the distance between the Dmt-Tic pharmacophore and a third aromatic nucleus is an important criterion in converting Dmt-Tic from a highly potent delta-antagonist into a potent delta-agonist or into ligands with mixed delta- and mu-opioid properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm010449i | DOI Listing |
Med Chem
November 2007
Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Kobe 651-2180, Japan.
Opioidmimetics containing 3-[H-Dmt-NH-(CH(2))(m)]-6-[H-Dmt-NH-(CH(2))(n)]-2(1H)-pyrazinone symmetric (m = n, 1-4) (1 - 4) and asymmetric (m, n = 1 - 4) aliphatic chains (5 - 16) were synthesized using dipeptidyl chloromethylketone intermediates. They had high mu-affinity (K(i)mu = 0.021 - 2.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2007
The Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan.
Twelve 2',6'-dimethyl-L-tyrosine (Dmt) analogues linked to a pyrazinone platform were synthesized as 3- or 6-[H-Dmt-NH(CH(2))(n)],3- or 6-R-2(1H)-pyrazinone (n=1-4). 3-[H-Dmt-NH-(CH(2))(4)]-6-beta-phenethyl-5-methyl-2(1H)-pyrazinone 11 bound to mu-opioid receptors with high affinity (K(i)mu=0.13 nM; K(i)delta/K(i)mu=447) with mu-agonism (GPI IC(50)=15.
View Article and Find Full Text PDFJ Med Chem
June 2007
The Graduate School of Food and Medicinal Sciences and Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan.
Endomorphin-2 (H-Tyr-Pro-Phe-Phe-NH2) and [Dmt1]EM-2 (Dmt = 2',6'-dimethyl-l-tyrosine) analogues, containing alkylated Phe3 derivatives, 2'-monomethyl (2, 2'), 3',5'- and 2',6'-dimethyl (3, 3', and 4', respectively), 2',4',6'-trimethyl (6, 6'), 2'-ethyl-6'-methyl (7, 7'), and 2'-isopropyl-6'-methyl (8, 8') groups or Dmt (5, 5'), had the following characteristics: (i) [Xaa3]EM-2 analogues exhibited improved mu- and delta-opioid receptor affinities. The latter, however, were inconsequential (Kidelta = 491-3451 nM). (ii) [Dmt1,Xaa3]EM-2 analogues enhanced mu- and delta-opioid receptor affinities (Kimu = 0.
View Article and Find Full Text PDFBioorg Med Chem
May 2007
Department of Toxicology, University of Cagliari, I-09124 Cagliari, Italy.
A wide range of activities are induced by Lys when introduced at C-terminus of the delta-opioid Dmt-Tic pharmacophore through the alpha-amine group, including: improved delta-antagonism, mu-agonism and mu-antagonism. Here we report the synthesis of a new series of compounds with the general formula H-Dmt-Tic-NH-(CH(2))(4)-CH(R)-R' (R=-NH(2), -NH-Ac, -NH-Z; R'=CO-NH-Ph, -CO-NH-CH(2)-Ph, -Bid) in which Lys is linked to Dmt-Tic through its side-chain amine group. All new compounds (1-9) displayed potent and selective delta-antagonism (MVD, pA(2)=7.
View Article and Find Full Text PDFBioorg Med Chem
February 2007
The Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan.
N-Allylation (-CH(2)-CHCH(2)) of [Dmt(1)]endomorphins yielded the following: (i) [N-allyl-Dmt(1)]endomorphin-2 (Dmt=2',6'-dimethyl-l-tyrosine) (12) and [N-allyl-Dmt(1)]endomorphin-1 (15) (K(i)mu=0.45 and 0.26nM, respectively) became mu-antagonists (pA(2)=8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!