The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes.

J Pharmacol Exp Ther

Birth Defects Research Center, Department of Pediatrics, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226-4801, USA.

Published: February 2002

Although some patterns are beginning to emerge, our knowledge of human phase I drug-metabolizing enzyme developmental expression remains far from complete. Expression has been observed as early as organogenesis, but this appears restricted to a few enzymes. At least two of the enzyme families that are expressed in the fetal liver exhibit a temporal switch in the immediate perinatal period (e.g., CYP3A7 to CYP3A4/3A5 and FMO1 to FMO3), whereas others show a progressive change in isoform expression through gestation (e.g., the class I alcohol dehydrogenases). Many of the phase I drug-metabolizing enzyme exhibit dynamic perinatal expression changes that are regulated primarily by mechanisms linked to birth and secondarily to maturity. A few of these enzymes are not detectable until well after birth, suggesting that birth is necessary but not sufficient for the onset of expression (e.g., CYP1A2). Tissue-specific expression adds to the complexity during ontogeny. For example, CYP3A7 expression is restricted to the fetal liver. However, with few exceptions, complete temporal relationship information during development is not known. Furthermore, most studies have concentrated on hepatic expression and much less is known about extrahepatic developmental events.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.300.2.355DOI Listing

Publication Analysis

Top Keywords

phase drug-metabolizing
8
drug-metabolizing enzyme
8
expression
8
fetal liver
8
ontogeny human
4
human drug-metabolizing
4
enzymes
4
drug-metabolizing enzymes
4
enzymes phase
4
phase oxidative
4

Similar Publications

Positioning Enzyme- and Transporter-Based Precipitant Drug-Drug Interaction Studies in Drug Design.

J Med Chem

January 2025

Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States.

assessment of the potential of compounds to affect drug metabolizing enzymes and transporters and perpetrate drug-drug interactions (DDIs) is a common practice in drug research. For the development phase, regulators define an exhaustive list of enzymes and transporters to consider, but DDIs associated with many of these are minor and can be well-managed in the clinic; thus, progression of drug candidates that address unmet medical needs should not be curtailed due to this property. However, some enzymes and transporters are very important in drug disposition, so it is important to avoid/reduce inhibition or induction of these through drug design.

View Article and Find Full Text PDF

The analytical and experimental investigation of several targets and biomarkers that help in explaining significant cognitive deficits, covering drug development and precision medicine aimed at different chronic neurodegenerative conditions such as Alzheimer's disease (AD), Parkinson's disease, synaptic dysfunction, brain damage from neuronal apoptosis, and other disease pathologies; this served as the foundation for all phase studies. The focus of current therapeutic approaches is on developing humanized antibodies, agonist and antagonist drugs, receptors, signaling molecules, major targeted drug-metabolizing enzymes, and other metabolites to treat neurodegeneration in the AD brain brought on by tau hyperphosphorylation, amyloid plagues, or other cholinergic effects. The five A's-amnesia, agnosia, aphasia, apraxia, and anomia-are the typical symptoms associated with AD.

View Article and Find Full Text PDF

In vitro screening of UGT2B10 in silico prioritized putative ligands from drugs used in the pediatric hematopoietic stem cell transplantation setting.

Pharmacol Res Perspect

December 2024

Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland.

UGT2B10 is a phase II drug metabolizing enzyme with limited information on its role in the metabolism of drugs, especially in the pediatric hematopoietic stem cell transplantation setting. Previously, we investigated UGT2B10's role through in silico analyses and prioritized acetaminophen (APAP), lorazepam (LOR), mycophenolic acid (MPA), and voriconazole N-oxide (VCZ N-oxide) for in vitro investigations. In this report, we present in vitro screening of these candidates and of voriconazole (VCZ) to assess their potential to be substrates and/or inhibitors of UGT2B10.

View Article and Find Full Text PDF

Background: Xenobiotic exposures can extensively influence the expression and alternative splicing of drug-metabolizing enzymes, including cytochromes P450 (CYPs), though their transcriptome-wide impact on splicing remains underexplored. This study used a well-characterized splicing event in the Cyp2b2 gene to validate a sandwich-cultured primary rat hepatocyte model for studying global splicing in vitro. Using endpoint PCR, RNA sequencing, and bioinformatics tools (rSeqDiff, rMATs, IGV), we analyzed differential gene expression and splicing in CYP and nuclear receptor genes, as well as the entire transcriptome, to understand how xenobiotic exposures shape alternative splicing and activate xenosensors.

View Article and Find Full Text PDF

Artificial intelligence modeling of biomarker-based physiological age: Impact on phase 1 drug-metabolizing enzyme phenotypes.

CPT Pharmacometrics Syst Pharmacol

November 2024

Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA.

Article Synopsis
  • The study developed two physiological age (PA) models, PA-M1 and PA-M2, using ensemble learning techniques on National Health and Nutrition Examination Survey (NHANES) data to assess drug metabolism across different age groups.
  • PA-M1 utilized a variety of predictors like body composition and disease variables, while PA-M2 focused on blood and urine-derived predictors, showing that certain biomarkers were significantly associated with PA outcomes.
  • The models demonstrated effective performance and were validated independently, indicating that PA is linked with the activity of key drug-metabolizing enzymes, providing a reliable way to assess aging effects on drug metabolism.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!