Mechanism of anaerobic ether cleavage: conversion of 2-phenoxyethanol to phenol and acetaldehyde by Acetobacterium sp.

J Biol Chem

Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, and Centro di Studio per le Sostanze Organiche Naturali, CNR, via Venezian 21, I-20133 Milano, Italy.

Published: April 2002

2-Phenoxyethanol is converted into phenol and acetate by a strictly anaerobic Gram-positive bacterium, Acetobacterium strain LuPhet1. Acetate results from oxidation of acetaldehyde that is the early product of the biodegradation process (Frings, J., and Schink, B. (1994) Arch. Microbiol. 162, 199-204). Feeding experiments with resting cell suspensions and 2-phenoxyethanol bearing two deuterium atoms at either carbon of the glycolic moiety as substrate demonstrated that the carbonyl group of the acetate derives from the alcoholic function and the methyl group derives from the adjacent carbon. A concomitant migration of a deuterium atom from C-1 to C-2 was observed. These findings were confirmed by NMR analysis of the acetate obtained by fermentation of 2-phenoxy-[2-(13)C,1-(2)H(2)]ethanol, 2-phenoxy-[1-(13)C,1-(2)H(2)]ethanol, and 2-phenoxy-[1,2-(13)C(2),1-(2)H(2)]ethanol. During the course of the biotransformation process, the molecular integrity of the glycolic unit was completely retained, no loss of the migrating deuterium occurred by exchange with the medium, and the 1,2-deuterium shift was intramolecular. A diol dehydratase-like mechanism could explain the enzymatic cleavage of the ether bond of 2-phenoxyethanol, provided that an intramolecular H/OC(6)H(5) exchange is assumed, giving rise to the hemiacetal precursor of acetaldehyde. However, an alternative mechanism is proposed that is supported by the well recognized propensity of alpha-hydroxyradical and of its conjugate base (ketyl anion) to eliminate a beta-positioned leaving group.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M111059200DOI Listing

Publication Analysis

Top Keywords

mechanism anaerobic
4
anaerobic ether
4
ether cleavage
4
cleavage conversion
4
2-phenoxyethanol
4
conversion 2-phenoxyethanol
4
2-phenoxyethanol phenol
4
phenol acetaldehyde
4
acetaldehyde acetobacterium
4
acetobacterium 2-phenoxyethanol
4

Similar Publications

Decipher syntrophies and adaptive response towards enhancing conversion of propionate to methane under psychrophilic condition.

Water Res

January 2025

Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address:

Propionate is a key intermediate in anaerobic digestion (AD) under low operational temperatures, which can destabilize the process. In this study, the supplementation of syntrophic cold-tolerant consortia and trace elements significantly improved the performance of psychrophilic (20 °C) reactor, increasing methane production to 91 % of mesophilic reactor levels and reducing propionate concentrations to less than 2 % of those in untreated psychrophilic reactors. Multi-omics analyses revealed that psychrophilic conditions downregulated the methylmalonyl-CoA and aceticlastic methanogenesis pathways.

View Article and Find Full Text PDF

Comprehensive genomic and transcriptomic analyses of the anaerobic degradation of microcystin in Alcaligenes faecalis D04.

Ecotoxicol Environ Saf

January 2025

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China. Electronic address:

Microcystin LR (MC-LR) pollution is a serious threat to aquatic ecosystems and public health in China and is an environmental problem that urgently needs to be solved. However, few studies have investigated the anaerobic degradation pathway and related molecular biological mechanisms of MC-LR. In this study, a bacterium capable of degrading MC-LR with a degradation efficiency of 0.

View Article and Find Full Text PDF

Soil-transmitted helminths (STH) are widespread, with Ascaris lumbricoides infecting millions globally. Malaria and STH co-infections are common in co-endemic regions. Artemisinin derivatives (ARTs)-artesunate, artemether, and dihydroartemisinin-are standard malaria treatments and are also known to influence the energy metabolism of parasites, tumors, and immune cells.

View Article and Find Full Text PDF

Organic carbon can influence nitrogen removal during the anaerobic ammonia oxidation (anammox) process. Propionate, a common organic compound in pretreated wastewater, its impacts on mixotrophic anammox bacteria and the underlying mechanisms have not been fully elucidated. This study investigated the core metabolism and shift in behavior patterns of mixotrophic Candidatus Brocadia sapporoensis (AMXB) under long-term propionate exposure.

View Article and Find Full Text PDF

Understanding the viability of ingested probiotics within the gastrointestinal tract is essential for evaluating their efficacy and deciphering their mechanisms of action. Detecting Bifidobacterium longum subspecies longum BB536 is particularly challenging owing to its indistinguishability from the naturally abundant B. longum species in the human gut.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!