The aim of the present study was to investigate, in patients with Alzheimer's disease (AD), and vascular dementia (VAD), patterns of local release of vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-beta), two cytokines having a pivotal role in hypoxia-induced angiogenesis. The intrathecal levels of these molecules were related to the clinical severity of these diseases and to the intrathecal levels of beta-amyloid protein. Significantly increased cerebrospinal fluid (CSF) levels of both VEGF and TGF-beta were observed in 20 patients with AD and in 26 patients with VAD compared to healthy controls. Interestingly, there was significant correlation between the CSF levels of TGF-beta and VEGF in all the individuals studied. Our study demonstrates, both in patients with AD and in patients with VAD, an intrathecal production of VEGF, a cytokine which plays a pivotal role in angiogenesis. These results suggest that vascular factors might not only play a role in the pathogenesis of VAD but also in the pathogenesis of AD. In addition, we show in AD and VAD an intrathecal production of TGF-beta, a cytokine exerting on one hand anti-inflammatory and angiogenic properties, but on the other promoting amyloidogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0197-4580(01)00285-8 | DOI Listing |
J Neurosurg Case Lessons
January 2025
Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
Background: Medically refractory hypertonia (MRH) within the pediatric population causes severe disability and is difficult to treat. Neurosurgery for mixed MRH includes intrathecal baclofen (ITB) and lumbosacral ventral-dorsal rhizotomy (VDR). Surgical efficacy limitations can be mitigated by combining the two into a multimodal strategy.
View Article and Find Full Text PDFBrain Behav Immun Health
February 2025
Department of Physiology, School of Medicine, University College Cork, Western Road, Cork, Ireland.
Duchenne muscular dystrophy (DMD), an X-linked neuromuscular disorder, characterised by progressive immobility, chronic inflammation and premature death, is caused by the loss of the mechano-transducing signalling molecule, dystrophin. In non-contracting cells, such as neurons, dystrophin is likely to have a functional role in synaptic plasticity, anchoring post-synaptic receptors. Dystrophin-expressing hippocampal neurons are key to cognitive functions such as emotions, learning and the consolidation of memories.
View Article and Find Full Text PDFLancet Neurol
February 2025
Department of Neurosciences, and Leuven Brain Institute, University of Leuven, Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, Leuven, Belgium. Electronic address:
Autosomal dominant mutations in the gene encoding the DNA and RNA binding protein FUS are a cause of amyotrophic lateral sclerosis (ALS), and about 0·3-0·9% of patients with ALS are FUS mutation carriers. FUS-mutation-associated ALS (FUS-ALS) is characterised by early onset and rapid progression, compared with other forms of ALS. However, different pathogenic mutations in FUS can result in markedly different age at symptom onset and rate of disease progression.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy.
The pathophysiology of cognitive impairment (CI) in multiple sclerosis (MS) remains unclear. Meningeal B cell aggregates may contribute to cortical grey matter pathology. Cerebrospinal fluid (CSF), kappa free light chains (KFLC), and KFLCs-Index (kappa-Index) are reliable quantitative markers of intrathecal synthesis, but few data have been presented exploring the association with CI, and no data are present for lambda FLC (LFLC) in MS.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy.
The kappa index is a well-established marker of intrathecal synthesis (IS) of immunoglobulin (Ig). Routinely used for diagnostic aims, IgG IS, which can be assessed quantitatively (ad hoc formulas) or qualitatively (oligoclonal bands, OCBs), may fail in detecting a humoral immune response within the central nervous system (CNS). The main aim of this study was to evaluate the kappa index for its ability to detect the presence of CNS humoral immunity and to associate it with a distinct group of disorders, in the absence of IgG IS/OCBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!