The growing use of NiTi rotary instruments in dental practice demands a good understanding of their concept of alloy and design in relation to improved properties and inherent limitations. Nickel titanium's super elasticity allows more centered canal preparations with less transportation and a decreased incidence of canal aberrations. Furthermore, the production of files with increased taper became possible. This is of special importance because of concerns on the achievement of adequate irrigation and close adaptation of the filling material during endodontic treatment. Unique shaft and tip designs should permit the use of a rotary handpiece allowing different tactile awareness. On the other hand, special attention is paid to maximize cutting efficiency and cutting control throughout instrumentation. NiTi rotary instruments are generally used in a crown-down approach and a continuous reaming motion. Consequently, rounder root canal preparations, with less straightening and a smaller amount of apical extrusion is achievable. In spite of their increased flexibility, separation is still a concern with NiTi files. The phenomenon of repeated cyclic metal fatigue and the variable of torsional loading are two important factors in instrument fracture. However, with awareness of the appropriate manipulation and special attention to the equipment used, NiTi systems are safe with a minimal incidence of instrument failure.

Download full-text PDF

Source

Publication Analysis

Top Keywords

niti rotary
12
rotary instruments
12
root canal
8
canal preparations
8
special attention
8
niti
5
mechanical root
4
canal
4
canal preparation
4
preparation niti
4

Similar Publications

One area of technological advancement has been the shift from stainless steel hand tools to nickel-titanium (Ni-Ti) rotary tools. This paper aims to perform an in vitro comparative study to evaluate the efficacy of five endodontic manual and rotary instruments such as Kerr files, Orodeka Plex V, ProTaper Flydent NiTi super files, and ProTaper Flydent NiTi super files in combination with an ultrasonic endodontic E3D Diamantata EMS scaler used for root canal shaping. The following aspects were highlighted: effective removal of smear layer (SL) from the dentinal tubules in the coronal 1/3, middle 1/3, and apical 1/3 of the root canal, appearance of cracks in the dentinal walls by SEM analysis, and highlighting of dentin mineral content and remnant debris by EDX analysis.

View Article and Find Full Text PDF

This study compared the apical transportation and centering ratio of ProTaper Next (PTN) and XP-endo Shaper (XPS) nickel titanium (NiTi) rotary files in curved root canals using cone beam computed tomography (CBCT). The current in vitro study involved the mesiobuccal canals of mesial roots in 44 extracted mandibular first molars that exhibited apical curvature ranging from 10° to 30°. Two experimental groups were randomly formed from the teeth ( = 22) and subjected to instrumentation with PTN and XPS.

View Article and Find Full Text PDF

Objective: The present study aimed to evaluate the phase transformation behavior and elemental analysis of thermomechanical-treated nickel-titanium (NiTi) rotary instruments, TruNatomy (Dentsply Sirona), HyFlex CM (coltene, Whaledent), and Neoendo Flex (Orikam healthcare India), using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and energy dispersive X-ray spectrometry.

Materials And Methods: A total of 18 NiTi rotary instruments, TruNatomy, Hyflex CM, Neoendo Flex, taper. 04, size 25 (except TruNatomy, size 26) were selected and were divided into three groups ( = 6).

View Article and Find Full Text PDF

The preservation of the original configurations of root canals during endodontic preparation is crucial for treatment success. Nickel-titanium (NiTi) rotary systems have been refined to optimize canal shaping while minimizing iatrogenic errors. This study aimed to evaluate and compare the shaping efficacy of the novel R-Motion (RM) and the established WaveOne Gold (WG) systems using micro-computed tomography (micro-CT).

View Article and Find Full Text PDF

The Novel Assessment to Explore the Cutting Performance of Rotary Instruments Using Dynamic Finite Element Analysis With Failure Mode.

J Endod

December 2024

Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University and National University Hospital, Taipei, Taiwan; National Taiwan University Hospital, National Taiwan University, Taipei City, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan. Electronic address:

Introduction: The separation of Nickel-Titanium (NiTi) endodontic instruments due to excessive torque adversely affects treatment outcomes. Previous studies have analyzed torque values under static conditions and failed to accurately simulate the dynamic conditions of instruments within root canals. This study aimed to apply a novel finite element analysis (FEA) to assess the real-time dynamic performance of NiTi endodontic instruments during operation in root canals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!