Experiments on the spatial behavior of the flax (Linum usitatissimum, L.) seedlings in a nonuniform magnetic field were conducted on the orbital space stations "Salut" and "Mir". This field can displace sensory organelles (statoliths) inside receptor cells and such displacement should cause a physiological reaction of the plant-tropistic curvature. Experiments were conducted in the custom-built "Magnetogravistat" facility, where seeds were germinated and grown for 3-4 days in a magnetic field with the dynamic factor grad (H2/2) approximately equal to 10(7) Oe2/cm, then fixed on orbit and returned to Earth for analysis. It was found, that 93% of the seedlings were oriented in the field consistently with curvature in response to displacement of statoliths along the field gradient by ponderomotive magnetic forces, while control seedlings grew in the direction of the initial orientation of the seed. This suggests, that gravity receptors of plants recognized magnetic forces on statoliths as gravity, and that gravity stimulus can be substituted for plants by a force of a different physical nature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0273-1177(01)00372-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!