The permeation of a series of structurally related compounds across silicone membranes (PDMS) was studied. The PDMS was saturated either with toluene, to mimic a functionally inert barrier, or octanol, to mimic the polar/hydrogen bonding environment of the stratum corneum lipid barrier. Phenol, salicylic acid, benzoic acid, anisole, phenylethanol and benzyl alcohol were chosen in an attempt to relate permeation to their different H-bonding capabilities. The flux was lower through the octanol system suggesting retardation by polar/H-bonding interactions. Separation of the permeability coefficient into its thermodynamic (partition coefficient) and kinetic (diffusion coefficient) terms suggests that the effect of altering polarity within the membrane has a greater impact on the diffusion of permeant rather than its chemical potential within the membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0928-0987(01)00212-3 | DOI Listing |
Polymers (Basel)
December 2024
Faculty of Educational Science, University of Helsinki, 00014 Helsinki, Finland.
Cellulose is a homopolymer composed of β-glucose units linked by 1,4-beta linkages in a linear arrangement, providing its structure with intermolecular H-bonding networking and crystallinity. The participation of hydroxy groups in the H-bonding network results in a low-to-average nucleophilicity of cellulose, which is insufficient for executing a nucleophilic reaction. Importantly, as a polyhydroxy biopolymer, cellulose has a high proportion of hydroxy groups in secondary and primary forms, providing it with limited aqueous solubility, highly dependent on its form, size, and other materialistic properties.
View Article and Find Full Text PDFProteins
January 2025
Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India.
The structural plasticity of proteins at the molecular level is largely dictated by backbone torsion angles, which play a critical role in ligand recognition and binding. To establish the anion-induced cooperative arrangement of the main-chain (mc) torsion, herein, we analyzed a set of naturally occurring CαNN motifs as "static models" for their anion-binding competence through docking and molecular dynamics simulations and decoded its torsion angle influenced mc-driven anion recognition potential. By comparing a pool of 20 distinct sets of CαNN motif with identical sequences in their "anion bound/present, aP" and "anion free/absent, aA" versions, we could discern that there exists a positive correlation between the "difference of anion residence time (ΔR)" and "difference among the main-chain torsion angle" of the aP and aA population.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNA from tRNA solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS).
View Article and Find Full Text PDFDalton Trans
December 2024
Department of Chemistry, Simon Fraser University, 8888 University Way, Burnaby BC V5A 1S6, Canada.
Improvements to the understanding of how reaction conditions influence the performance of molecular electrocatalysts are important. There exists a wide range of solution conditions that are used in the investigation of the properties and performance of electrocatalysts, from the choice of solvent or electrolyte to the identity and nature of other additives, like Brønsted acids. Herein, we demonstrate how the choice of solvent can have a significant impact on the observed rate constants for CO-to-CO conversion by a series of rhenium(I) diimine complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!