O(6)-methylguanine-DNA methyltransferase (MGMT) as a determinant of resistance to camptothecin derivatives.

Jpn J Cancer Res

Department of Biochemistry and Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima 734-8553, Japan.

Published: January 2002

The precise mechanisms of resistance to camptothecin (CPT)-derived DNA topoisomerase (topo I) inhibitors and the determinants remain unclear. We found that a DNA repair protein, O(6)-methylguanine-DNA methyltransferase (MGMT), participated in resistance to irinotecan hydrochloride (CPT-11), its active metabolite SN-38, and a novel CPT derivative, DX-8951f. In 17 human cancer cell lines, MGMT gene expression level closely correlated with sensitivity to the CPT derivatives, and inhibition of MGMT activity by nontoxic 5 microM O(6)-benzylguanine augmented the drug activity in relation to the MGMT expression levels in 8 cell lines examined. Transfection of pCR / MGMT-sense into U-251MG and pCR / MGMT-antisense into T98G and HEC-46 cells revealed that increased MGMT expression decreased the sensitivity to CPT-11, SN-38, and DX-8951f, whereas repressed MGMT expression sensitized cells to the drugs. Western analysis revealed that treatment of MGMT-expressing T98G cells with the drugs caused a decrease of both MGMT and topo I in a dose-dependent manner. Although, in the transfectants, MGMT expression did not so closely correlate with the sensitivity to drugs as to nimustine hydrochloride (ACNU), MGMT is probably an important resistance determinant to CPT derivatives, and may play some role in the topo I-mediated DNA damage and / or the repair process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5926864PMC
http://dx.doi.org/10.1111/j.1349-7006.2002.tb01205.xDOI Listing

Publication Analysis

Top Keywords

mgmt expression
16
mgmt
10
o6-methylguanine-dna methyltransferase
8
methyltransferase mgmt
8
resistance camptothecin
8
cell lines
8
cpt derivatives
8
cells drugs
8
expression
5
mgmt determinant
4

Similar Publications

Glioblastoma, isocitrate dehydrogenase (IDH)-wildtype (GBM), is the most malignant brain tumor in adults, with limited therapeutic intervention. Previous studies have identified a few prognostic markers for GBM, including the methylation status of O-methylguanine-DNA methyltransferase (MGMT) promoter, TERT promoter mutation, EGFR amplification, and CDKN2A/2B deletion. However, the classification of GBM remains incomplete, necessitating a comprehensive analysis.

View Article and Find Full Text PDF

Introduction: Recently, the O-6-methylguanine-DNA methyltransferase (MGMT) locus was proposed as influencing the risk of Alzheimer's disease (AD) in women who did not carry the apolipoprotein E ε4 allele. We examined an Amish founder population for any influence of genetic variation in and around the MGMT locus on the risk for dementia.

Methods: Genetic association was performed for single nucleotide polymorphisms (SNPs) surrounding the MGMT locus.

View Article and Find Full Text PDF

Background: Alteration in DNA repair and metabolism genes can affect the maintenance of DNA integrity or xenobiotics metabolism, potentially leading to DNA damage accumulation. The present study investigated the association between polymorphisms in Glutathione S-Transferase Pi 1 (GSTP1, rs1695) and O-6-Methylguanine-DNA Methyltransferase (MGMT, rs2308321) genes with urothelial bladder cancer (UBC) susceptibility and prognosis. Furthermore, the methylation patterns of the promoter region of these genes were analyzed in tumor and non-tumor bladder tissues, besides MGMT gene expression in tumor samples.

View Article and Find Full Text PDF

Prognostic signature detects homologous recombination deficient in glioblastoma.

Transl Cancer Res

November 2024

Department of Neurosurgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.

Background: Glioblastoma (GBM) is a frequent malignant tumor in neurosurgery characterized by a high degree of heterogeneity and genetic instability. DNA double-strand breaks generated by homologous recombination deficiency (HRD) are a well-known contributor to genomic instability, which can encourage tumor development. It is unknown, however, whether the molecular characteristics linked with HRD have a predictive role in GBM.

View Article and Find Full Text PDF

Background: Levetiracetam (Lev), an antiepileptic drug (AED), enhances alkylating chemotherapy sensitivity in glioblastoma (GB) by inhibiting MGMT expression. This meta-analysis evaluates Lev's impact on GB treatment by analyzing overall survival of individual patient data (IPD) from published studies.

Methods: IPD was reconstructed using the R package IPDfromKM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!