Syndecan-4 mediates antithrombin-induced chemotaxis of human peripheral blood lymphocytes and monocytes.

J Cell Sci

Division of General Internal Medicine, Department of Internal Medicine, University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.

Published: January 2002

Antithrombin inhibits chemokine-induced migration of neutrophils by activating heparan sulfate proteoglycan-dependent signaling. Whether antithrombin affects migration of other types of leukocytes is not known. We investigated the effects of antithrombin on spontaneous and chemokine-triggered migration of lymphocytes and monocytes from human peripheral blood in modified Boyden chamber micropore filter assays. Lymphocyte and monocyte populations from human peripheral blood were purified using magnetic antibody cell sorting. The signaling mechanisms required for antithrombin-dependent migration were studied using signaling enzyme blockers. Expression of heparan sulfate proteoglycan core protein was studied by RT-PCR and flow cytometry. The antithrombins used were Kybernin P from human plasma and a monoclonal-antibody-purified preparation from this plasma. Pretreatment of lymphocytes and monocytes with antithrombin inhibited chemotaxis toward optimal concentrations of interleukin-8 or Rantes (regulated upon activation normal T-cell expressed and activated) at concentrations of antithrombin as low as 10 nU/ml. In the absence of the chemokines, direct exposure of cells to gradients of antithrombin stimulated migration. Effects of antithrombin were abolished by pretreating cells with heparinase-1, chondroitinase, sodium chlorate and anti-syndecan-4 antibodies. Expression of syndecan-4 mRNA and protein in monocytes and lymphocytes was demonstrated in RT-PCR and anti-syndecan-4 immunoreactivity assays, respectively. In the presence of pentasaccharide, antithrombin lost its effect on cells. Data indicate that antithrombin directly inhibits chemokine-stimulated migration of monocytes and lymphocytes via the effects of its heparin-binding site on cell surface syndecan-4 by activation of protein kinase C and Rho signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.115.1.227DOI Listing

Publication Analysis

Top Keywords

human peripheral
12
peripheral blood
12
lymphocytes monocytes
12
antithrombin
9
monocytes antithrombin
8
heparan sulfate
8
effects antithrombin
8
monocytes lymphocytes
8
migration
6
lymphocytes
5

Similar Publications

A novel compound heterozygous mutation in the DYNC2H1 gene in a Chinese family with Jeune syndrome.

Hereditas

January 2025

Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.

Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).

View Article and Find Full Text PDF

Background: Dishevelled-associated activator of morphogenesis1 (DAAM1) is a member of the evolutionarily conserved Formin family and plays a significant role in the malignant progression of various human cancers. This study aims to explore the clinical and biological significance of DAAM1 in pancreatic cancer.

Methods: Multiple public datasets and an in-house cohort were utilized to assess the clinical relevance of DAAM1 in pancreatic cancer.

View Article and Find Full Text PDF

Platelet-rich fibrin (PRF) and Enamel Matrix Derivatives (EMD) can support the local regenerative events in periodontal defects. There is reason to suggest that PRF and EMD exert part of their activity by targeting the blood-derived cells accumulating in the early wound healing blastema. However, the impact of PRF and EMD on blood cell response remains to be discovered.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a rapidly progressive interstitial lung disease of unknown pathogenesis with no effective treatment currently available. Given the regulatory roles of lncRNAs (TP53TG1, LINC00342, H19, MALAT1, DNM3OS, MEG3), miRNAs (miR-218-5p, miR-126-3p, miR-200a-3p, miR-18a-5p, miR-29a-3p), and their target protein-coding genes (PTEN, TGFB2, FOXO3, KEAP1) in the TGF-β/SMAD3, Wnt/β-catenin, focal adhesion, and PI3K/AKT signaling pathways, we investigated the expression levels of selected genes in peripheral blood mononuclear cells (PBMCs) and lung tissue from patients with IPF. Lung tissue and blood samples were collected from 33 newly diagnosed, treatment-naive patients and 70 healthy controls.

View Article and Find Full Text PDF

Background: The identification of circulating potential biomarkers may help earlier diagnosis of breast cancer, which is critical for effective treatment and better disease outcomes. We aimed to study the role of circ-FAF1 as a diagnostic biomarker in female breast cancer using peripheral blood samples of these patients, and to investigate the relation between circ-FAF1 and different clinicopathological features of the included patients.

Methods And Results: This case-control study enrolled 60 female breast cancer patients and 60 age-matched healthy control subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!