Inhibitors of apoptosis (IAPs) physically interact with a variety of pro-apoptotic proteins and inhibit apoptosis induced by diverse stimuli. X-linked IAP (X-IAP) is a prototype IAP family member that inhibits several caspases, the effector proteases of apoptosis. The inhibitory activity of X-IAP is regulated by SMAC, a protein that is processed to its active form upon receipt of a death stimulus. Cleaved SMAC binds X-IAP and antagonizes its anti-apoptotic activity. Here we show that melanoma IAP (ML-IAP), a potent anti-cell death protein and caspase inhibitor, physically interacts with SMAC through its BIR (baculovirus IAP repeat) domain. In addition to binding full-length SMAC, ML-IAP BIR associates with SMAC peptides that are derived from the amino terminus of active, processed SMAC. This high affinity interaction is very specific and can be completely abolished by single amino acid mutations either in the amino terminus of active SMAC or in the BIR domain of ML-IAP. In cells expressing ML-IAP and X-IAP, SMAC coexpression or addition of SMAC peptides abrogates the ability of the IAPs to inhibit cell death. These results demonstrate the feasibility of using SMAC peptides as a way to sensitize IAP-expressing cells to pro-apoptotic stimuli such as chemotherapeutic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M112045200 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Biology, Kyung Hee University, Seoul, 02447, South Korea. Electronic address:
Fragile X Mental Retardation Protein 1 (FMR1) is a translational repressor crucial for regulating genes in the central nervous system. While a lack of FMR1 expression causes Fragile X Syndrome (FXS), its overexpression is implicated in various cancers, necessitating tight regulation of FMR1 protein levels for normal cell physiology. In this study, we report that FMR1 is upregulated in gastric cancer patients.
View Article and Find Full Text PDFCells
November 2024
School of Pharmacy, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, China.
SET and MYND Domain-Containing 2 (Smyd-2), a specific protein lysine methyltransferase (PKMT), influences both histones and non-histones. Its role in cerebral ischemia/reperfusion (CIR), particularly in ferroptosis-a regulated form of cell death driven by lipid peroxidation-remains poorly understood. This study identifies the expression of Smyd-2 in the brain and investigates its relationship with neuronal programmed cell death (PCD).
View Article and Find Full Text PDFSci Rep
December 2024
Human Anatomy and Embryology Area, Department of Functional Biology and Health Sciences, University of Vigo, Lagoas-Marcosende, s/n, Vigo, 36310, Spain.
Oral squamous cell carcinoma (OSCC) poses significant health risks with increasing incidence and mortality rates. In this context, there is an urgent need to explore novel biomarkers to enhance therapeutic strategies and improve survival. Understanding apoptotic evasion in cancer pathogenesis, this pioneering study aims to investigate the correlation between a pro-apoptotic protein Smac/DIABLO and patient prognosis within the OSCC cohort.
View Article and Find Full Text PDFCell Death Dis
November 2024
Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
Small molecule inhibitors of apoptosis proteins (IAPs) antagonists, known as Smac mimetics (SMs), activate non-canonical NF-κB and sensitize cancer cells to TNF-induced cell death. SMs are currently in phase III clinical trials for head and neck squamous cell carcinoma (HNSCC) after promising phase II trials. To explore the utility of SMs in oral squamous cell carcinoma (OSCC), we tested nine human OSCC cell lines and correlated SM sensitivity with both IAP mutation and expression levels.
View Article and Find Full Text PDFAnticancer Drugs
January 2025
Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China.
The objective of this study is to observe the antitumor efficacy of the second mitochondria-derived activator of caspases (SMAC) mimetic bivalent smac mimetic (BV6) in combination with target of rapamycin (mTOR) inhibitor on DDP (cisplatin) sensitivity. Ovarian cancer cells were exposed to cisplatin, BV6, DDP + BV6, and DDP + BV6 + mTOR inhibitor Rapamycin. Using proteomics and bioinformatics, protein expression profiles in ovarian cancer were determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!