A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. | LitMetric

AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience.

J Antimicrob Chemother

Department of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA.

Published: February 2002

Amphotericin B is the treatment of choice for life-threatening systemic fungal infections such as candidosis and aspergillosis. To improve this drug's efficacy and reduce its acute and chronic toxicities, several lipid formulations of the drug have been developed, including AmBisome, a liposomal formulation of amphotericin B. The liposome is composed of high transition temperature phospholipids and cholesterol, designed to incorporate amphotericin B securely into the liposomal bilayer. AmBisome can bind to fungal cell walls, where the liposome is disrupted. The amphotericin B, after being released from the liposomes, is thought to transfer through the cell wall and bind to ergosterol in the fungal cell membrane. This mechanism of action of AmBisome results in its potent in vitro fungicidal activity while the integrity of the liposome is maintained in the presence of mammalian cells, for which it has minimal toxicity. In animal models, AmBisome is effective in treating both intracellular (leishmaniasis and histoplasmosis) and extracellular (candidosis and aspergillosis) systemic infections. Because of its low toxicity at the organ level, intravenous AmBisome can be safely delivered at markedly high doses of amphotericin B (1-30 mg/kg) for the treatment of systemic fungal infections. AmBisome has a circulating half-life of 5-24 h in animals, and in animal models appears to localize at sites of infection in the brain (cryptococcosis, aspergillosis, coccidioidomycosis), lungs (blastomycosis, paracoccidioidomycosis, aspergillosis) and kidneys (candidosis), delivering amphotericin B that remains bioavailable in tissues for several weeks following treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/49.suppl_1.21DOI Listing

Publication Analysis

Top Keywords

ambisome liposomal
8
liposomal formulation
8
mechanism action
8
systemic fungal
8
fungal infections
8
candidosis aspergillosis
8
fungal cell
8
animal models
8
ambisome
7
amphotericin
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!