Transverse momentum spectra for charged hadrons and for neutral pions in the range 1 GeV/c

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.88.022301DOI Listing

Publication Analysis

Top Keywords

transverse momentum
8
suppression hadrons
4
hadrons large
4
large transverse
4
momentum central
4
central au+au
4
au+au collisions
4
collisions root
4
root square[snn]
4
square[snn] 130
4

Similar Publications

Thermostat-induced artificial lane formation in non-equilibrium molecular dynamics.

J Chem Phys

January 2025

CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.

While most thermostats in molecular dynamics are designed for equilibrium systems, their extension to non-equilibrium simulations has little theoretical justification. In the literature, an artifact referred to as "lane formation" was discovered; however, its cause remained unclear and was simply attributed to a constraint on velocity fluctuations or non-ergodicity in thermostats. In addition, global deterministic thermostatted dynamics was found to exhibit unceasing phase-space compression in steady states, incompatible with their expected stationary distributions and Gibbs entropy, which was mistakenly perceived as inescapable.

View Article and Find Full Text PDF

Nanostructured dielectric metasurfaces offer unprecedented opportunities to control light-matter momentum exchange, and thereby the forces and torques that light can exert on matter. Here we introduce optical metasurfaces as components of ultracompact untethered microscopic metaspinners capable of efficient light-induced rotation in a liquid environment. Illuminated by weakly focused light, a metaspinner generates torque via photon recoil through the metasurfaces' ability to bend light towards high angles despite their sub-wavelength thickness, thereby creating orbital angular momentum.

View Article and Find Full Text PDF

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Transverse Momentum Distributions from Lattice QCD without Wilson Lines.

Phys Rev Lett

December 2024

Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.

The transverse-momentum-dependent distributions (TMDs), which are defined by gauge-invariant 3D parton correlators with staple-shaped lightlike Wilson lines, can be calculated from quark and gluon correlators fixed in the Coulomb gauge on a Euclidean lattice. These quantities can be expressed gauge invariantly as the correlators of Coulomb-gauge-dressed fields, which reduce to the standard TMD correlators under principal-value prescription in the infinite boost limit. In the framework of large-momentum effective theory, a quasi-TMD defined from such correlators in a large-momentum hadron state can be matched to the TMD via a factorization formula, whose exact form is derived using soft collinear effective theory and verified at one-loop order.

View Article and Find Full Text PDF

Given the higher fall risk and the fatal sequelae of falls on stairs, it is worthwhile to investigate the mechanism of dynamic balance control in individuals with knee osteoarthritis during stair negotiation. Whole-body angular momentum ([Formula: see text]) is widely used as a surrogate to reflect dynamic balance and failure to constrain [Formula: see text] may increase the fall risk. This study aimed to compare the range of [Formula: see text] between people with and without knee osteoarthritis during stair ascent and descent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!