A series of pentadecanuclear lanthanide-hydroxo complexes possessing a common core of the formula [Ln(15)(mu(3)-OH)(20)(mu(5)-X)](24+)(1, Ln = Eu, X = Cl(-); 2, Ln = Nd, X = Cl(-); 3, Ln = Gd, X = Cl(-); 4, Ln = Pr, X = Br(-); 5, Ln = Eu, X = Br(-)) were prepared by L-tyrosine-controlled hydrolysis of corresponding lanthanide perchlorates in the presence of added Cl(-) or Br(-). The cationic cluster core comprises five vertex-sharing cubane-like [Ln(4)(mu(3)-OH)(4)](8+) units centered on the halide template. In the case of templating I(-), dodecanuclear complexes were isolated instead. The core component, [Ln(12)(mu(3)-OH)(16)(I)(2)](18+) (6, Ln = Dy; 7, Ln = Er), consists of four vertex-sharing cubane-like [Ln(4)(mu(3)-OH)(4)](8+) units and exists as a square-shaped cyclic structure with one I(-) located on each side of the square plane. An analogous hydrolytic reaction involving Er(NO(3))(3), L-tyrosine, and NaOH affords the known hexanuclear complex [Er(6)(mu(6)-O)(mu(3)-OH)(8)(NO(3))(6)(H(2)O)(12)](NO(3))(2) whose core component is a face-capped octahedral [Er(6)(mu(6)-O)(mu(3)-OH)(8)](8+) cluster with an interstitial mu(6)-oxo group (Wang, R.; Carducci, M. D.; Zheng, Z. Inorg. Chem. 2000, 39, 1836-1837.). The efficient self-assembly of halide-encapsulating multicubane complexes (1-7) and the inability to produce an analogous nitrate-containing complex demonstrate the superior templating roles played by the halide ion(s). Further credence for the halide template effects was provided by the isolation of the cationic pentadecanuclear complex 3 as the sole product when tyrosine-supported hydrolysis of Gd(NO(3))(3) was carried out in the presence of competitive Cl(-). Magnetic moments of complexes 1-7 measured at room temperature by using Evans' method are in excellent agreement with those calculated by the Van Vleck equation, assuming magnetically noninteractive lanthanide ions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic010859xDOI Listing

Publication Analysis

Top Keywords

lanthanide-hydroxo complexes
8
cl- cl-
8
cl- br-
8
vertex-sharing cubane-like
8
cubane-like [ln4mu3-oh4]8+
8
[ln4mu3-oh4]8+ units
8
halide template
8
core component
8
complexes 1-7
8
complexes
5

Similar Publications

The unique family of coordination polymers [Ln(OH)(piv)(HO)] of 11 lanthanides (Ln = La-Er) has been prepared by a simple solution method based on controlled hydrolysis. The ribbon-like polymeric structure consisting of connected tetranuclear clusters and supported by pivalate ligands and a framework of H-bonds has been revealed by single-crystal X-ray diffraction. While the compounds demonstrate similar PXRD patterns and unit cell parameters, the joint single-crystal XRD and pair distribution function data suggest the significant local structure change along the lanthanide series.

View Article and Find Full Text PDF

Two dysprosium aggregates, formulated as [Dy(μ-OH)(Hbpte)Cl(MeOH)]Cl (1), and [Dy(μ-OH)(bpte)]·24HO (2) (Hbpte = 1,2-bis(3-(pyridin-2-yl)-1H-1,2,4-triazol-5-yl)ethane), were obtained using solvothermal reactions. Upon changing the metal salt and synthetic reaction conditions, an eight-member {Dy} (2) ring was isolated. Complex 1 is centrosymmetric in which two {Dy} clusters are connecting to each other through the hydrogen bonding.

View Article and Find Full Text PDF

Polynuclear lanthanide hydroxo complexes: new chemical precursors for coordination polymers.

Inorg Chem

October 2005

Laboratoire de Chimie du Solide et Inorganique Moléculaire, UMR 6511-CNRS-INSA de Rennes, France.

The synthesis of hexanuclear lanthanide hydroxo complexes by controlled hydrolysis led to polymorphic compounds. The hexanuclear entities crystallize in four different ways that depend on the extent of their hydration. The four structures can be described as hexanuclear lanthanide entities with formula [Ln(6)(mu(6)-O)(mu(3)-OH)(8)(NO(3))(6)(H(2)O)(12)](2+).

View Article and Find Full Text PDF

The reaction of Ln(acac)(3).3H(2)O (Ln = Sm, Eu, Gd, Dy, Yb) with K[Cr(2)(CO)(10)(micro-H)] at different molar ratios and solvents leads to the formation of nonanuclear lanthanide hydroxo acetylacetonate complexes of general formula [Ln(9)(OH)(10)(acac)(16)][HCr(2)(CO)(10)]. The compounds are isomorphous, and the common cationic cluster core consists of a novel square antiprismatic arrangement of nine Ln atoms connected by micro(3), micro(4) hydroxo bridges and/or by acetylacetonate ligands as it results from the single-crystal X-ray analysis of the Sm derivative for which the most suitable crystals were obtained.

View Article and Find Full Text PDF

A series of pentadecanuclear lanthanide-hydroxo complexes possessing a common core of the formula [Ln(15)(mu(3)-OH)(20)(mu(5)-X)](24+)(1, Ln = Eu, X = Cl(-); 2, Ln = Nd, X = Cl(-); 3, Ln = Gd, X = Cl(-); 4, Ln = Pr, X = Br(-); 5, Ln = Eu, X = Br(-)) were prepared by L-tyrosine-controlled hydrolysis of corresponding lanthanide perchlorates in the presence of added Cl(-) or Br(-). The cationic cluster core comprises five vertex-sharing cubane-like [Ln(4)(mu(3)-OH)(4)](8+) units centered on the halide template. In the case of templating I(-), dodecanuclear complexes were isolated instead.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!