Disruption of the M2 gene of murine gammaherpesvirus 68 alters splenic latency following intranasal, but not intraperitoneal, inoculation.

J Virol

Division of Microbiology and Immunology, Yerkes Regional Primate Research Center, Emory University, Atlanta, Georgia 30329, USA.

Published: February 2002

Infection of mice with murine gammaherpesvirus 68 (gamma HV68; also referred to as MHV68) provides a tractable small-animal model with which to address the requirements for the establishment and maintenance of gammaherpesvirus infection in vivo. The M2 gene of gamma HV68 is a latency-associated gene that encodes a protein lacking discernible homology to any known viral or cellular proteins. M2 gene transcripts have been detected in latently infected splenocytes (S. M. Husain, E. J. Usherwood, H. Dyson, C. Coleclough, M. A. Coppola, D. L. Woodland, M. A. Blackman, J. P. Stewart, and J. T. Sample, Proc. Natl. Acad. Sci. USA 96:7508-7513, 1999; H. W. Virgin IV, R. M. Presti, X. Y. Li, C. Liu, and S. H. Speck, J. Virol. 73:2321-2332, 1999) and peritoneal exudate cells (H. W. Virgin IV, R. M. Presti, X. Y. Li, C. Liu, and S. H. Speck, J. Virol. 73:2321-2332, 1999), as well as in a latently gamma HV68-infected B-lymphoma cell line (S. M. Husain, E. J. Usherwood, H. Dyson, C. Coleclough, M. A. Coppola, D. L. Woodland, M. A. Blackman, J. P. Stewart, and J. T. Sample, Proc. Natl. Acad. Sci. USA 96:7508-7513, 1999). Here we describe the generation of gamma HV68 mutants with disruptions in the M2 gene. Mutation of the M2 gene did not affect the ability of the virus to replicate in tissue culture, nor did it affect gamma HV68 virulence in B6.Rag1 deficient mice. However, we found that M2 was differentially required for acute replication in vivo. While mutation of M2 did not affect acute phase of virus replication in the lungs of mice following intranasal inoculation, acute-phase virus replication in the spleen was decreased compared to that of the wild-type and marker rescue viruses following intraperitoneal inoculation. Upon intranasal inoculation, M2 mutant viruses exhibited a significant decrease in the establishment of latency in the spleen on day 16 postinfection, as measured by the frequency of viral genome-positive cells. In addition, M2 mutant viral genome-positive cells reactivated from latency inefficiently compared to wild-type and marker rescue viruses. By day 42 after intranasal inoculation, the frequencies of M2 mutant and wild-type viral genome-positive cells were nearly equivalent and little reactivation was detected from either population. In sharp contrast to the results obtained following intranasal inoculation, after intraperitoneal inoculation, no significant defect was observed in the establishment or reactivation from latency with the M2 mutant viruses. These results indicate that the requirements for the establishment of latency are affected by the route of infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC135904PMC
http://dx.doi.org/10.1128/jvi.76.4.1790-1801.2002DOI Listing

Publication Analysis

Top Keywords

gamma hv68
16
intranasal inoculation
16
intraperitoneal inoculation
12
viral genome-positive
12
genome-positive cells
12
murine gammaherpesvirus
8
requirements establishment
8
husain usherwood
8
usherwood dyson
8
dyson coleclough
8

Similar Publications

Background: Belatacept, a B7-specific fusion protein, blocks CD28-B7 costimulation and prevents kidney allograft rejection. However, it is ineffective in a sizable minority of patients. Although T-cell receptor and CD28 engagement are known to initiate T-cell activation, many human antigen-experienced T-cells lose CD28, and can be activated independent of CD28 signals.

View Article and Find Full Text PDF

Alpha beta-crystallin (CRYAB) is a small heat shock protein that can function as a molecular chaperone and has protective effects for cells undergoing a variety of stressors. Surprisingly, CRYAB has been identified as one of the dominant autoantigens in multiple sclerosis. It has been suggested that autoimmune mediated destruction of this small heat shock protein may limit its protective effects, thereby exacerbating inflammation and cellular damage during multiple sclerosis.

View Article and Find Full Text PDF

Many viruses have evolved mechanisms to evade host immunity by subverting the function of dendritic cells (DCs). This study determined whether murine gammaherpesvirus-68 (gamma HV-68) could infect immature or mature bone-marrow-derived DCs and what effect infection had on DC maturation. It was found that gamma HV-68 productively infected immature DCs, as evidenced by increased viral titres over time.

View Article and Find Full Text PDF

Murine gammaherpesvirus-68 (gamma HV-68) is a tractable model to investigate the pathophysiology of human gammaherpesvirus infections, including Epstein-Barr virus (EBV). Herpesvirus infections are thought to play a role in the pathology of damaging, inflammatory diseases states of the central nervous system (CNS), such as multiple sclerosis. The ability of the host to mount a strong cell-mediated immune response is critical in determining the outcome of viral infections.

View Article and Find Full Text PDF

We have previously demonstrated that it is possible to effectively vaccinate against long-term murine gammaherpesvirus 68 (gamma HV68) latency by using a reactivation-deficient virus as a vaccine (S. A. Tibbetts, J.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!