The establishment of cancer in a host involves at least two major events: the escape of tumor cells from normal growth control and their escape from immunological recognition. Because of this nature of their development, cancer cells seem to be predominatly poorly immunogenic. In contrast to the previous idea that cancer cells express no recognizable antigens, recent progress in the identification and characterization of tumor antigens, as well as the expansion of knowledge on the cellular and molecular mechanisms of antigen recognition by the immune system, have raised the possibility of using immunotherapy to treat certain tumors. Information on these mechanisms has been obtained in three crucial areas: 1) the role of cytokines in the regulation of the immune response, 2) the molecular characterization of tumor antigens in both mouse and human tumors, and 3) the molecular mechanisms of T cell activation and antigen presentation. Such information has provided new insight into tumor immunology and immunotherapy. Furthermore, recombinant DNA technology allows for modification of the genome of mammalian cells for therapeutic purposes in several diseases. Several novel strategies have been developed to derive genetically modified tumor cells and use them as cellular vaccines to induce antitumor immunity in animal tumor models. This combined modality of genetically modified tumor cells and immunotherapy has been termed immunogene therapy of tumors. Crucial to this approach has been the ability to transfer into normal or neoplastic cells genes known to increase the immunogenicity of cells, which subsequently can be used to augment immune reactions in tumor-bearing mice or cancer patients. While there has been success in inducing antitumor immunity in some tumor models, there are difficulties and limitations in the application of these gene-modified tumor cells for the treatment of preexisting tumors. In this review, recent progress in cancer immunogene therapy is discussed.
Download full-text PDF |
Source |
---|
J Inflamm Res
January 2025
Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China.
Ovarian cancer (OC) remains one of the most lethal gynecological malignancies, largely due to its late-stage diagnosis and high recurrence rates. Chronic inflammation is a critical driver of OC progression, contributing to immune evasion, tumor growth, and metastasis. Inflammatory cytokines, including IL-6, TNF-α, and IL-8, as well as key signaling pathways such as nuclear factor kappa B (NF-kB) and signal transducer and activator of transcription 3 (STAT3), are upregulated in OC, promoting a tumor-promoting environment.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer, characterized by frequent recurrence, metastasis, and poor survival outcomes despite chemotherapy-based treatments. This study aims to investigate the mechanisms by which Traditional Chinese Medicine (TCM) modulates the tumor immune microenvironment in TNBC, utilizing CiteSpace and bioinformatics analysis.
Methods: We employed CiteSpace to analyze treatment hotspots and key TCM formulations, followed by bioinformatics analysis to identify the main active components, targets, associated pathways, and their clinical implications in TNBC treatment.
Front Immunol
January 2025
Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survivalprocesses essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Background: The Arp2/3 complex is a key regulator of tumor metastasis, and targeting its subunits offers potential for anti-metastatic therapy. However, the expression profiles, prognostic relevance, and diagnostic value of its subunits across cancers remain poorly understood. This study aims to investigate the clinical relevance of Arp2/3 complex subunits, particularly ARPC1A, in pan-cancer, and to further analyze the potential biological mechanisms of ARPC1A, as well as its association with immune infiltration and chemotherapy drug sensitivity.
View Article and Find Full Text PDFFront Immunol
January 2025
Traditional Chinese Medicine Department of Orthopaedic and Traumatic, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Colorectal cancer (CRC) is one of the most prevalent malignant tumors in the world, and its occurrence and development are closely related to the complex immune regulatory mechanisms. As the first barrier of the body's defense, innate immunity plays a key role in tumor immune surveillance and anti-tumor response, in which type I/III interferon (IFN) is an important mediator with significant antiviral and anti-tumor functions. 5-methylcytosine (m5C) modification of RNA is a key epigenetic regulation that promotes the expression of CRC oncogenes and immune-related genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!