Cellular senescence and matrix metalloproteinase activity in chronic wounds. Relevance to debridement and new technologies.

J Am Podiatr Med Assoc

University of California San Diego Medical Center, Regional Burn Center/Wound Treatment and Research Center, 200 W Arbor Dr 8896, San Diego, CA 92103-8896, USA.

Published: January 2002

A prolonged inflammatory response may adversely affect wound closure. Delayed wound closure and extended exposure to chronic wound fluid may also affect cellular activity in a wound bed and result in cellular senescence. Prolonged inflammation and cellular senescence may adversely affect the efficacy of topically-applied biological agents, including growth factors. Appropriate wound bed preparation and debridement are necessary to improve clinical outcomes of new technologies.

Download full-text PDF

Source
http://dx.doi.org/10.7547/87507315-92-1-34DOI Listing

Publication Analysis

Top Keywords

cellular senescence
12
adversely affect
8
wound closure
8
wound bed
8
wound
5
cellular
4
senescence matrix
4
matrix metalloproteinase
4
metalloproteinase activity
4
activity chronic
4

Similar Publications

This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).

View Article and Find Full Text PDF

Exosomal miR-302b rejuvenates aging mice by reversing the proliferative arrest of senescent cells.

Cell Metab

January 2025

Henan Academy of Sciences, Zhengzhou 450000, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:

Cellular senescence, a hallmark of aging, involves a stable exit from the cell cycle. Senescent cells (SnCs) are closely associated with aging and aging-related disorders, making them potential targets for anti-aging interventions. In this study, we demonstrated that human embryonic stem cell-derived exosomes (hESC-Exos) reversed senescence by restoring the proliferative capacity of SnCs in vitro.

View Article and Find Full Text PDF

A review of effects of electromagnetic fields on ageing and ageing dependent bioeffects of electromagnetic fields.

Sci Total Environ

January 2025

Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, 310030, Hangzhou, China. Electronic address:

Thanks to the progress of science and technology, human life expectancy has dramatically increased in the past few decades, but accompanied by rapid ageing of population, resulting in increased burden on society. At the same time, the living environment, especially the electromagnetic environment, has also greatly changed due to science and technology advances. The effect of artificial electromagnetic fields (EMFs) emitted from power lines, mobile phones, wireless equipment, and other devices on ageing and ageing-related diseases are receiving increasing attention.

View Article and Find Full Text PDF

In the background of antioxidation properties of selenium (Se) in plants, the role of nano‑selenium (Se-NPs) was justified in the modulation of Capsicum fruit ripening. In our study, exogenous application of 8 mg L Se-NPs on fruits through 7 days (D) of postharvest storage regulated decay rate, water loss and fruit coat firmness. Se-NPs recovered fruit coat damages with reduction of ion leakage, lipid oxidation, and accumulation of polyamines.

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!