PLC-gamma1 enzyme activity is required for insulin-induced DNA synthesis.

Endocrinology

Medical Research Service, San Diego Veterans Affairs Healthcare System, San Diego, California 92161, USA.

Published: February 2002

Previously, we had shown that inhibition of PLC activity impaired the ability of insulin to activate ERK in 3T3-L1 adipocytes. In this study, we confirmed that the insulin receptor and PLC-gamma1 are physically associated in hIRcB fibroblasts, insulin stimulates PLC-gamma1 enzyme activity, and inhibition of PLC activity impairs activation of ERK. We subsequently investigated whether PLC-gamma1 is required for insulin-stimulated mitogenesis. First, inhibition of PLC activity using U73122 impairs the ability of insulin to stimulate DNA synthesis. Second, disruption of the interaction of the insulin receptor with PLC-gamma1 by microinjection of SH2 domains derived from PLC-gamma1 or Grb2 but not Shc similarly blocks insulin-induced DNA synthesis. Third, microinjection of neutralizing antibodies to PLC-gamma1 blocks DNA synthesis, but nonneutralizing antibodies do not. The blockade in all three cases is rescued by synthetic diacylglycerols but not by inositol-1,4,5-trisphosphate, indicating a requirement for PLC enzyme activity. These experimental data point to a requirement for PLC-gamma1 in insulin-stimulated mitogenesis in hIRcB cells.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo.143.2.8621DOI Listing

Publication Analysis

Top Keywords

dna synthesis
16
enzyme activity
12
inhibition plc
12
plc activity
12
plc-gamma1
8
plc-gamma1 enzyme
8
insulin-induced dna
8
ability insulin
8
insulin receptor
8
receptor plc-gamma1
8

Similar Publications

Detection of Protein-Nucleic Acid Interaction by Electrophoretic Mobility Shift Assay.

Methods Mol Biol

January 2025

Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT, USA.

Electrophoretic Mobility Shift Assay (EMSA) is a powerful technique for studying nucleic acid and protein interactions. This technique is based on the principle that nucleic acid-protein complex and nucleic acid migrate at different rates due to differences in size and charge. Nucleic acid and protein interactions are fundamental to various biological processes, such as gene regulation, replication, transcription, and recombination.

View Article and Find Full Text PDF

A cell-free gene expression system for prototyping and gene expression analysis.

Appl Environ Microbiol

December 2024

Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.

is an obligate anaerobic, Gram-positive bacterium that produces toxins. Despite technological progress, conducting gene expression analysis of under different conditions continues to be labor-intensive. Therefore, there is a demand for simplified tools to investigate the transcriptional and translational regulation of .

View Article and Find Full Text PDF

Protein kinase R (PKR) is an interferon-induced antiviral protein activated by autophosphorylation in response to double strand DNA (dsRNA) and other stimuli. Activated PKR causes translation inhibition and apoptosis, and it contributes to proinflammatory responses, cell growth, and differentiation. Mouse adenovirus type 1 (MAV-1) counteracts PKR by causing its degradation via a viral protein, early region 4 open reading frame 6 (E4orf6).

View Article and Find Full Text PDF

Synthesis and Anticancer Studies of Pt(II) Complex Derived from 4-Phenylthiosemicarbazone.

Chem Biodivers

January 2025

Guangxi Science and Technology Normal University, School of food biochemical engineering, Tiebei road 966, 546199, Laibin, CHINA.

Although cisplatin is widely used as a first-line chemotherapy agent, it has significant side effects. Herein, we synthesized a Pt(II) complex (Pt1) derived from o-vanillin-4-phenylthiosemicarbazone ligand, and confirmed its crystal structure by X-ray crystallography. Complex Pt1 exhibited potent anticancer activity against various tested cancer cell lines, with particular efficacy against HepG-2 cells.

View Article and Find Full Text PDF

G9a/GLP Modulators: Inhibitors to Degraders.

J Med Chem

January 2025

SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.

Histone methylation, a crucial aspect of epigenetics, intricately involves specialized enzymes such as G9a, a histone methyltransferase (HMT) catalyzing the methylation of histone H3 lysine 9 (H3K9) and H3K27. Apart from histone modification, G9a regulates essential cellular processes such as deoxyribonucleic acid (DNA) replication, damage repair, and gene expression via modulating DNA methylation patterns. The dysregulation and overexpression of G9a are intricately linked to cancer initiation, progression, and metastasis, making it a compelling target for anticancer therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!