Stable films of dimyristoylphosphatidylcholine and M. tuberculosis catalase-peroxidase (KatG), several peroxidases, myoglobin, and catalase showed reversible FeIII/FeII voltammetry on pyrolytic graphite electrodes and catalytic current for hydrogen peroxide and oxygen. Amperometric responses for these films to H2O2 at 0 V are likely to contain significant contributions from catalytic reduction of oxygen produced during the catalytic cycles. Relative apparent turnover rates at pH 6 based on steady-state currents at 0 V versus SCE in the presence of H2O2 were in the order horseradish peroxidase > cytochrome c peroxidase (CcP) > soybean peroxidase > myoglobin > KatG > catalase. Lower currents for the very efficient peroxide scavengers KatG and catalase may be related to the instability of their compounds I in the presence of H2O2. KatG catalyzed the electrochemical reduction of oxygen more efficiently than catalase and CcP but less efficiently than the other peroxidases. DMPC films incorporating glucose oxidase and peroxidases gave good analytical responses to glucose, demonstrating the feasibility of dual enzyme-lipid films for biosensor fabrication.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac010701uDOI Listing

Publication Analysis

Top Keywords

tuberculosis catalase-peroxidase
8
reduction oxygen
8
presence h2o2
8
katg catalase
8
catalase
5
films
5
direct voltammetry
4
voltammetry catalysis
4
catalysis mycobacterium
4
mycobacterium tuberculosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!