The risk related to cardiovascular autonomic neuropathy dysautonomia should lead to a specific assessment of this complication of diabetes. The aim of this study was to estimate the accuracy of a battery of blood pressure (BP) and heart rate (HR) variability indexes obtained in different subgroups of diabetic subjects classified according to the conventional laboratory autonomic function tests (Ewing scores). Blood pressure was measured continuously at the finger level with a Finapres monitor while subjects were in the supine position and again while they were standing. Pulse intervals were derived from BP recordings and were taken as surrogates for R-R intervals. Subjects with borderline or definite cardiovascular autonomic neuropathy showed a similar degree of alterations of both HR and BP variability (spectral measures) and in the relationship between BP and HR (cross-spectral and sequence analysis). Subjects with no evidence of cardiovascular autonomic neuropathy on the basis of the conventional tests showed an altered relationship between BP and HR. This baroreceptor-HR reflex dysfunction could represent an early stage of cardiovascular autonomic neuropathy undetected by the conventional tests. The areas under the receiver operating characteristic plots indicated that the high-frequency peak of pulse interval was highly discriminant in the supine and standing positions. The cross-spectral analysis showed the best discrimination for the gain in the high-frequency range. For the sequence analysis, the slope was the best discriminant factor for any degree of cardiovascular autonomic neuropathy. In conclusion, these estimates of baroreceptor-HR function may provide a powerful tool for assessing cardiovascular autonomic neuropathy at any stage, including the early stage, which is not detected by the conventional tests.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02292769DOI Listing

Publication Analysis

Top Keywords

cardiovascular autonomic
28
autonomic neuropathy
28
conventional tests
12
autonomic
8
blood pressure
8
sequence analysis
8
early stage
8
cardiovascular
7
neuropathy
7
time- frequency-domain
4

Similar Publications

Background: Postural Orthostatic Tachycardia Syndrome (POTS) is a complex form of dysautonomia that presents with abnormal autonomic reflexes upon standing, leading to symptoms such as lightheadedness, tachycardia, fatigue, and cognitive impairment. The COVID-19 pandemic has brought renewed attention to POTS due to its overlap with post-acute sequelae of COVID-19 (PASC). Studies have found that a substantial percentage of COVID-19 survivors exhibit symptoms resembling POTS, elevating POTS diagnoses to previously unseen levels.

View Article and Find Full Text PDF

The risk of cardiovascular disease differs among various ethnic groups, highlighting disparities in cardiovascular health among different populations. While multiple studies from other countries have looked at changes in physiological parameters during autonomic function tests like isometric handgrip and cold pressor tests, no correlational research has been done in Saudi Arabia. This lacuna underscores the importance of examining the relationship between cardiorespiratory parameters in young Saudi Arabian individuals during these tests.

View Article and Find Full Text PDF

Motor neuron diseases are not exclusively motor; the SSR paradigm.

Amyotroph Lateral Scler Frontotemporal Degener

January 2025

2nd Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece.

Motor Neuron Diseases (MNDs), familial and sporadic, are progressive neurodegenerative disorders that, for an extended period in the past, were considered purely motor disorders. During the course of the disease, however, some patients exhibit concomitant non-motor signs; thus, MNDs are currently perceived as multisystem disorders. Assessment of non-motor symptoms is usually performed clinically, although laboratory tests can also be routinely used to objectively evaluate these symptoms.

View Article and Find Full Text PDF

During exercise circulatory adjustments to meet oxygen demands are mediated by multiple autonomic mechanisms, the skeletal muscle exercise pressor reflex (EPR), the baroreflex (BR), and by feedforward signals from central command neurons in higher brain centers. Insulin resistance in peripheral tissues includes sensitization of skeletal muscle afferents by hyperinsulinemia which is in part responsible for the abnormally heightened EPR function observed in diabetic animal models and patients. However, the role of insulin signaling within the central nervous system (CNS) is receiving increased attention as a potential therapeutic intervention in diseases with underlying insulin resistance.

View Article and Find Full Text PDF

The autonomic nervous system plays a crucial role in regulating physiological processes and maintaining homeostasis through its two branches: the sympathetic nervous system (SNS) and the parasympathetic nervous system. Dysregulation of the autonomic system, characterized by increased sympathetic activity and reduced parasympathetic tone, is a common feature in chronic kidney disease (CKD) and cardiovascular disease. This imbalance contributes to a pro-inflammatory state, exacerbating disease progression and increasing the risk for cardiovascular events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!