Purpose: To develop a magnetic resonance (MR)-compatible, versatile, easy-to-use, and low-cost device for refractive correction.

Materials And Methods: We retrospectively evaluated the application and practicability of the refractive correction in 110 subjects who had participated in various functional MR imaging (fMRI) studies with complex visual stimulation paradigms since the introduction of the MR-compatible lens frame at our site. The subjects consisted of 31 patients with Parkinson's disease (age range, 40-85; mean age, 63.2 years) and 79 healthy volunteers (age range, 18-79; mean age, 46.7 years).

Results: In volunteers, experimentally induced myopia caused a substantial (>20%) reduction of the blood oxygenation level dependent (BOLD) response to a flickering dartboard.

Conclusion: Refractive errors (and the resulting optical blur) may play a nonnegligible role as a possible interfering factor in fMRI experiments with visual stimuli. The MR-compatible frame (fitted with appropriate lenses) used in this study affords full refractive correction at reasonable cost and preparation time.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.10031DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
8
imaging fmri
8
refractive correction
8
age range
8
refractive
5
refractive anomalies
4
anomalies visual
4
visual activation
4
activation functional
4
functional magnetic
4

Similar Publications

Imaging Fibroblast Activation Protein: Direct Visualization of Matrix Proteolytic Activity in Patients Post Myocardial Infarction.

J Am Coll Cardiol

December 2024

Section of Cardiovascular Medicine, Department of Medicine, Yale University, School of Medicine, New Haven, Connecticut, USA; Department of Radiology and Biomedical Imaging, Yale University, School of Medicine, New Haven, Connecticut, USA; Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA. Electronic address:

View Article and Find Full Text PDF

Background: Myocardial fibrosis is a key healing response after myocardial infarction driven by activated fibroblasts. Gallium-68-labeled fibroblast activation protein inhibitor ([Ga]-FAPI) is a novel positron-emitting radiotracer that binds activated fibroblasts.

Objectives: The aim of this study was to investigate the intensity, distribution, and time-course of fibroblast activation after acute myocardial infarction.

View Article and Find Full Text PDF

Higher Aircraft Noise Exposure Is Linked to Worse Heart Structure and Function by Cardiovascular MRI.

J Am Coll Cardiol

December 2024

UCL MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom; UCL Institute of Cardiovascular Science, University College London, London, United Kingdom; Centre for Inherited Heart Muscle Conditions, Cardiology Department, Royal Free Hospital, London, United Kingdom. Electronic address:

Background: Aircraft noise is a growing concern for communities living near airports.

Objectives: This study aimed to explore the impact of aircraft noise on heart structure and function.

Methods: Nighttime aircraft noise levels (L) and weighted 24-hour day-evening-night aircraft noise levels (L) were provided by the UK Civil Aviation Authority for 2011.

View Article and Find Full Text PDF

Demographic-Based Personalized Left Ventricular Hypertrophy Thresholds for Hypertrophic Cardiomyopathy Diagnosis.

J Am Coll Cardiol

December 2024

Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom.

Background: Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death. Current diagnosis emphasizes the detection of left ventricular hypertrophy (LVH) using a fixed threshold of ≥15-mm maximum wall thickness (MWT). This study proposes a method that considers individual demographics to adjust LVH thresholds as an alternative to a 1-size-fits-all approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!