A variety of methods have been described for making synthetic polynucleotide microarrays. These include in situ synthesis directly on the array surface, for example, by photolithography or ink-jet printing technologies, and the application of presynthesized polynucleotides that are derivatized with various nucleophiles or electrophiles. In the latter case, a variety of surface chemistries have been developed, and several are available commercially. These chemistries must be compatible with nanoliter-scale volumes of polynucleotide reagents, which contact the array over a small portion of their surface. We reasoned that a three-dimensional polymer coating could potentially offer greater surface contact and higher binding efficiency. Here we describe a polyethylenimine-based coating chemistry that provides exceptional binding and hybridization characteristics. In our preferred process, size-fractionated polyethylenimine polymers are cross-linked onto an aminopropylsilanated glass surface in the presence of cyanuric chloride. The resulting three-dimensional coating binds polynucleotides through a mixture of covalent and noncovalent interactions as evidenced by comparisons between 5'-aminoalkyl modified and unmodified polynucleotides. Binding and hybridization comparisons are presented including analogous two-dimensional electrophilic and electrostatic chemistries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bc015523q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!