A well-known complication in corneal repair surgery is (recurrent) rejection of donor corneal tissue. particularly in patients suffering from an auto-immune disease such as rheumatoid arthritis. Down-regulation of their immune system, by means of drugs, is necessary in order to perform an allograft implantation afterwards. The patient may need a temporary prosthetic cornea while the immune system is inactivated. Recently, NeuroPatch, a mesh-type polyurethane, was used for this purpose. The material exhibits excellent biocompatibility and allows ingrowth of stromal fibroblasts which deposit matrix material into the pores. A serious drawback of NeuroPatch is its non-transparency, which impairs vision. In this work we attempted to develop an improved biomaterial that combines the advantages of NeuroPatch with optical transparency. Based on previous findings that copolymers of hexaethyleneglycolmethacrylate (HEGMA) and butylmethacrylate (BMA), are transparent and well accepted by human corneal epithelial cells, we studied these materials further in detail. (Bruining et al., Bio-Macromolecules 1 (2000) 418) Copolymerizations were studied by means of 1H NMR. The influence of the HEGMA content on hydrophilicity, flexibility and resistance to protein adsorption was studied. The results indicate that materials with a HEGMA content of approximately 20 mol% are potentially useful in corneal repair surgery. These biomaterials meet most of the stringent physical and biological requirements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0142-9612(01)00237-x | DOI Listing |
Regen Biomater
November 2024
Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China.
Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications.
View Article and Find Full Text PDFCornea
November 2024
Department of Ophthalmology, University of British Columbia, Vancouver, BC, Canada.
Osteo-odonto-keratoprosthesis (OOKP) is a surgical procedure reserved for severe end-stage corneal blindness with a dry, keratinized ocular surface. Late resorption of bone has been described as a complication of this procedure. We present a novel surgical technique to repair laminar resorption associated with OOKP using transpalpebral split-pedicle orbicularis oculi flaps.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.
J Control Release
December 2024
Department of Ophthalmology, Changzhou Third Peopls's Hospital, Changzhou Clinical College of Xuzhou Medical University, 300 Lanlin North road, Changzhou, Jiangsu 213000, China. Electronic address:
Neutrophil extracellular traps (NETs) promote neovascularization during the acute phase after ocular chemical injury, while the local inflammatory acidic environment delays post-injury repair. Currently, the mechanism of NETs promoting neovascularization has not been fully elucidated, and there is a lack of therapeutic strategies to effectively improve the local microenvironment for corneal repair. In this study, we validated the NETs-M2-angiogenic pathway after injury.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!