A non-invasive cine magnetic resonance imaging (MRI) technique was developed to allow, for the first time, detection and characterization of chronic changes in myocardial tissue volume and the effects upon these of treatment by the angiotensin-converting enzyme (ACE) inhibitor captopril in streptozotocin (STZ)-diabetic male Wistar rats. Animals that had been made diabetic at the ages of 7, 10 and 13 weeks and a captopril-treated group of animals made diabetic at the age of 7 weeks were scanned. The findings were compared with the results from age-matched controls. All animal groups (n = 4 animals in each) were consistently scanned at 16 weeks. Left and right ventricular myocardial volumes were reconstructed from complete data sets of left and right ventricular transverse sections which covered systole and most of diastole using twelve equally incremented time points through the cardiac cycle. The calculated volumes remained consistent through all twelve time points of the cardiac cycle in all five experimental groups and agreed with the corresponding post-mortem determinations. These gave consistent myocardial densities whose values could additionally be corroborated by previous reports, confirming the validity of the quantitative MRI results and analysis. The myocardial volumes were conserved in animals whose diabetes was induced at 13 weeks but were significantly increased relative to body weight in animals made diabetic at 7 and 10 weeks. Captopril treatment, which was started immediately after induction of diabetes, prevented the development of this relative hypertrophy in both the left and right ventricles. We have thus introduced and validated quantitative MRI methods in a demonstration, for the first time, of chronic myocardial changes in both the right and left ventricles of STZ-diabetic rats and their prevention by the ACE inhibitor captopril.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290059PMC
http://dx.doi.org/10.1113/jphysiol.2001.012856DOI Listing

Publication Analysis

Top Keywords

animals diabetic
12
magnetic resonance
8
resonance imaging
8
myocardial changes
8
angiotensin-converting enzyme
8
ace inhibitor
8
inhibitor captopril
8
left ventricular
8
myocardial volumes
8
time points
8

Similar Publications

Therapeutic Potential of Dimethyl Sulfoxide Subconjunctival Injection in a Diabetic Retinopathy Rat Model.

In Vivo

December 2024

Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea

Background/aim: Diabetic retinopathy (DR), a complication of diabetes, causes damage to retinal blood vessels and can lead to vision impairment. Persistent high blood glucose levels contribute to this damage, and despite ongoing research, effective treatment options for DR remain limited. Dimethyl sulfoxide (DMSO) has shown anti-inflammatory and antioxidant properties in both in vivo and in vitro studies; however, its potential as an anti-inflammatory agent in the context of DR has not yet been explored.

View Article and Find Full Text PDF

Interaction of Vitamin D-BODIPY With Fat Cells and the Link to Obesity-associated Vitamin D Deficiency.

Anticancer Res

January 2025

Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, U.S.A.;

Background/aim: Obese individuals often exhibit vitamin D deficiency, potentially due to sequestration in fat cells. Little is known about how vitamin D enters adipocytes and associates with the intracellular lipid droplet.

Materials And Methods: Newly differentiated human and mouse (3T3-L1) adipocytes and primary mouse adipocytes were treated with vitamin D covalently linked to green fluorescent BODIPY (VitD-B) or Green BODIPY (GB) as control.

View Article and Find Full Text PDF

Background: Dietary recommendations have globally shifted towards promoting the consumption of legumes as an environmentally friendly and healthy source of protein. This study investigated the replacement of red and processed meat, poultry or fish for equal amounts of legumes on the risk of non-alcoholic fatty liver disease (NAFLD).

Methods: UK Biobank participants who completed ≥ 2 dietary assessments and had complete covariate information were included in the analyses (N = 124,546).

View Article and Find Full Text PDF

Aim: Imbalanced M1/M2 macrophage phenotype activation is a key point in diabetic kidney disease (DKD). Macrophages mainly exhibit the M1 phenotype, which contributes to inflammation and fibrosis in DKD. Studies have indicated that autophagy plays an important role in M1/M2 activation.

View Article and Find Full Text PDF

Endothelial cells and high glucose-induced endothelial dysfunction are the common origin of chronic diabetic complications such as retinopathy, nephropathy, and cardiomyopathy. Yet their common origins, the vascular manifestations of such complications are different. We examined the basal heterogeneity between microvascular endothelial cells(MECs) from the retina, kidneys, and heart, as well as their differential responses to hyperglycemia in diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!