To study the contribution of the Na(+)-Ca(2+) exchanger to Ca(2+) regulation and its interaction with the sarcoplasmic reticulum (SR), changes in cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) were measured in single, voltage clamped, smooth muscle cells. Increases in [Ca(2+)](c) were evoked by either depolarisation (-70 mV to 0 mV) or by release from the SR by caffeine (10 mM) or flash photolysis of caged InsP(3) (InsP(3)). Depletion of the SR of Ca(2+) (verified by the absence of a response to caffeine and InsP(3)) by either ryanodine (50 microM), to open the ryanodine receptors (RyRs), or thapsigargin (500 nM) or cyclopiazonic acid (CPA, 10 microM), to inhibit the SR Ca(2+) pumps, reduced neither the magnitude of the Ca(2+) transient nor the relationship between the influx of and the rise in [Ca(2+)](c) evoked by depolarisation. This suggested that Ca(2+)-induced Ca(2+) release (CICR) from the SR did not contribute significantly to the depolarisation-evoked rise in [Ca(2+)](c). However, although Ca(2+) was not released from it, the SR accumulated the ion following depolarisation since ryanodine and thapsigargin each slowed the rate of decline of the depolarisation-evoked Ca(2+) transient. Indeed, the SR Ca(2+) content increased following depolarisation as assessed by the increased magnitude of the [Ca(2+)](c) levels evoked each by InsP(3) and caffeine, relative to controls. The increased SR Ca(2+) content following depolarisation returned to control values in approximately 12 min via Na(+)-Ca(2+) exchanger activity. Thus inhibition of the Na(+)-Ca(2+) exchanger by removal of external Na(+) (by either lithium or choline substitution) prevented the increased SR Ca(2+) content from returning to control levels. On the other hand, the Na(+)-Ca(2+) exchanger did not appear to regulate bulk average Ca(2+) directly since the rates of decline in [Ca(2+)](c), following either depolarisation or the release of Ca(2+) from the SR (by either InsP(3) or caffeine), were neither voltage nor Na(+) dependent. Thus, no evidence for short term (seconds) control of [Ca(2+)](c) by the Na(+)-Ca(2+) exchanger was found. Together, the results suggest that despite the lack of CICR, the SR removes Ca(2+) from the cytosol after its elevation by depolarisation. This Ca(2+) is then removed from the SR to outside the cell by the Na(+)-Ca(2+) exchanger. However, the exchanger does not contribute significantly to the decline in bulk average [Ca(2+)](c) following transient elevations in the ion produced either by depolarisation or by release from the store.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290079 | PMC |
http://dx.doi.org/10.1113/jphysiol.2001.013039 | DOI Listing |
Biomed Pharmacother
December 2024
Department of Biology, University of Naples Federico II, Naples, Italy; Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, AV, Italy.
Intracellular Ca homeostasis dysregulation, through the modulation of calcium permeable ion channels and transporters, is gaining attention in cancer research as an apoptosis evasion mechanism. Recently, we highlighted a prognostic role for several calcium permeable channels. Among them, here, we focused on the plasma membrane bidirectional Na/Ca exchanger SLC8A1.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.
The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China.
To explore the changes in groundwater hydrochemistry and its source influence in the low water level period of the southern oasis area of Gaochang District, Turpan City before and after the management of groundwater overexploitation, based on 12 groups of water samples in 2016 (three groups of unconfined water, nine groups of confined water) and 18 groups of water samples in 2023 (five groups of unconfined water, thirteen groups of confined water), mathematical statistics, hydrochemical diagraph, hydrogen and oxygen isotope means, and an absolute principle component-multiple linear regression (APCS-MLR) model were used to analyze the changes and sources of groundwater hydrochemistry. The results showed that due to the dynamic conditions of groundwater, the dominant cation changed from Na to Ca, and the anion changed from HCO to SO. The dominant cation of confined water changed from Ca to Na, and the dominant anion remained unchanged as SO.
View Article and Find Full Text PDFEnviron Sci Process Impacts
December 2024
Anhui Bossco Environmental Protection Technology Co., Ltd, Ningguo, Anhui, 242301, China.
Contamination of heavy metals (HMs) has caused increasing concern due to their ecological toxicities and difficulties in degradation. The transport, retention, and release of HMs in porous media are highly related to their environmental fate and risk to groundwater. Column transport experiments and numerical simulations were conducted to investigate the retention and release behaviors of Cu, Pb, Cd, and Zn in the presence and absence of kaolin under varying ionic strengths and cation types.
View Article and Find Full Text PDFFront Physiol
December 2024
Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.
Introduction: Intracellular Ca signalling regulates membrane permeabilities, enzyme activity, and gene transcription amongst other functions. Large transmembrane Ca electrochemical gradients and low diffusibility between cell compartments potentially generate short-lived, localised, high-[Ca] microdomains. The highest concentration domains likely form between closely apposed membranes, as at amphibian skeletal muscle transverse tubule-sarcoplasmic reticular (T-SR, triad) junctions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!