P-type ATPases are a venerable family of ATP-dependent ion transporters. Recently, evidence was presented that a rabbit gene in the type IV subfamily of P-type ATPases was missing a transmembrane helix (transmembrane domain 4) thought to be critical for ion transport, a deletion that would place the two major catalytic loops of the enzyme on opposite sides of the membrane. It was proposed that the resulting protein was a RING finger-binding protein that targets transcription factors to specific domains within the nucleus. From analysis of human genomic sequence data, it is shown here that the region containing transmembrane domain 4, corresponding to exon 12, is present in the human homolog of the gene, ATP11B. PCR analysis indicates that the predominant Atp11b transcripts in a rabbit cDNA library and in a mouse cDNA library also contain exon 12. The results suggest that the transcript proposed to encode the RING finger-binding protein is a minor rabbit-specific splice variant. The ATP11B gene thus may not encode a protein with a function radically different from that of other P-type ATPase transporters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M200240200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!