Angiotensin and cytoskeletal proteins: role in vascular remodeling.

Curr Hypertens Rep

Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.

Published: February 2002

Vascular remodeling occurs during normal development and is involved in various physiologic events. However, the adaptive structural changes of the vasculature can also be pathologic, leading to vascular disease such as hypertension, atherosclerosis, and vein graft disease. Pre-eclampsia may develop as a consequence of inappropriate vascular remodeling during pregnancy. Angiotensin II contributes to vascular remodeling by activating signal transduction cascades that promote vasoconstriction, growth, and inflammation. The cytoskeleton also participates in structural adaptation responses of the vasculature; cytoskeletal filaments may mediate vasoactive responses, transduce mechanical stimuli, and are involved in pharmacologic signal transduction. It has become clear that many of the cytoskeletal changes during vascular remodeling can be induced by angiotensin II. Recently, the small G-protein Rho has attracted much attention. The Rho/Rho-kinase system is activated by angiotensin II, is a prominent regulator of the cytoskeleton, and is involved in pathologic vascular remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11906-002-0055-9DOI Listing

Publication Analysis

Top Keywords

vascular remodeling
24
signal transduction
8
vascular
7
remodeling
6
angiotensin
4
angiotensin cytoskeletal
4
cytoskeletal proteins
4
proteins role
4
role vascular
4
remodeling vascular
4

Similar Publications

Objective: The complex mix of factors, including hemodynamic forces and wall remodeling mechanisms, that drive intracranial aneurysm growth is unclear. This study focuses on the specific regions within aneurysm walls where growth occurs and their relationship to the prevalent hemodynamic conditions to reveal critical mechanisms leading to enlargement.

Methods: The authors examined hemodynamic models of 67 longitudinally followed aneurysms, identifying 88 growth regions.

View Article and Find Full Text PDF

Ischemic stroke is the most common cerebrovascular disease and the leading cause of permanent disability worldwide. Recent studies have shown that stroke development and prognosis are closely related to abnormal tryptophan metabolism. Here, significant downregulation of 3-hydroxy-kynurenamine (3-HKA) in stroke patients and animal models is identified.

View Article and Find Full Text PDF

Natural Killer Cell Education in Women With Recurrent Pregnancy Loss.

Am J Reprod Immunol

February 2025

GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.

Problem: Natural killer (NK) cells undergo education for full functionality via interactions between killer immunoglobulin-like receptors (KIRs) or NKG2A and human leukocyte antigen (HLA) ligands. Presumably, education is important during early pregnancy as insufficient education has been associated with impaired vascular remodeling and restricted fetal growth in mice. NK cell education is influenced by receptor co-expression patterns, human cytomegalovirus (CMV), the HLA-E107 dimorphism, and HLA-B leader peptide variants.

View Article and Find Full Text PDF

ACSL1 Aggravates Thromboinflammation by LPC/LPA Metabolic Axis in Hyperlipidemia Associated Myocardial Ischemia-Reperfusion Injury.

Adv Sci (Weinh)

January 2025

Shanghai Key Laboratory of Vascular Lesions and Remodeling, Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.

Acute myocardial infarction (AMI) is associated with well-established metabolic risk factors, especially hyperlipidemia and obesity. Myocardial ischemia-reperfusion injury (mIRI) significantly offsets the therapeutic efficacy of revascularization. Previous studies indicated that disrupted lipid homeostasis can lead to lipid peroxidation damage and inflammation, yet the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor Roxadustat Accelerates Wound Healing in a Mouse Hind limb Lymphedema Model.

Adv Wound Care (New Rochelle)

January 2025

Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.

Drugs regulating hypoxia-inducible factor (HIF)-1α have not been investigated for wound healing in lymphedema. Therefore, we examined the effects of drug modulation of HIF-1α activity for wound healing in our previously developed mouse model of nonirradiated hind limb lymphedema. Mouse hind limb lymphedema models ( = 17) and a sham group ( = 6) were created using 8- to 10-week-old male C57BL/6N mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!