Itracellular injections of Mg into cat spinal motoneurones have a depolarizing action, associated with a fall in input conductance, and depression of the postspike hyperpolarizing after-potential (a.h.p.) as well as its underlying conductance increase. There is also an increase in excitability, sometimes leading to outright discharge, and a change in the current-firing relation: the normal primary range is largely abolished and the firing appears to have the characteristics of the normal secondary range. Intracellular effects of Mg are thus mainly opposite to those of Ca, possibly owing to competition at sites where Ca activates K channels. Intracellular injections of Mn also tend to depress the a.h.p. but have relatively little effect on resting potential and conductance, or action potentials. Co also depresses the a.h.p. but has a more pronounced depolarizing action, and produces particularly strong depression of action potentials. By contrast intracellular Sr tends to raise the membrane conductance and has a mild hyperpolarizing effect. During the injection of Sr, a.h.p's are depressed but this is followed by a rebound of increased a.h.p. amplitude and conductance. Unlike the other divalent cations tested, Sr strongly depressed excitatory postsynaptic potentials. In most respects Sr appears to behave like Ca.

Download full-text PDF

Source
http://dx.doi.org/10.1139/y79-145DOI Listing

Publication Analysis

Top Keywords

divalent cations
8
depolarizing action
8
action potentials
8
conductance
5
intracellular
4
intracellular divalent
4
cations neuronal
4
neuronal excitability
4
excitability itracellular
4
itracellular injections
4

Similar Publications

Compositional heterogeneity of secondary minerals in mine waste rock: Origins and implications for water quality.

J Hazard Mater

January 2025

Department of Geological Sciences & Geological Engineering, Queen's University, Kingston, ON K7L 3N6, Canada. Electronic address:

Secondary minerals in mine waste materials impose strong controls on water quality by scavenging solutes of concern. This study investigates the mineralogical and compositional characteristics of secondary Fe(oxy)hydroxides and Ca-sulfates, two globally ubiquitous secondary precipitates, in weathered mine waste rock. Bulk analyses show that Si, Ca, Fe, Al, and S-bearing primary phases were the most abundant in the entire samples, but up to a few wt% of secondary Fe(oxy)hydroxides and Ca-sulfates were present as well.

View Article and Find Full Text PDF

Podocytes express large-conductance Ca-activated K channels (BK channels) and at least two different pore-forming KCa1.1 subunit C-terminal splice variants, known as VEDEC and EMVYR, along with auxiliary β and γ subunits. Podocyte KCa1.

View Article and Find Full Text PDF

The ion binding to the lipid/water interface can substantially influence the structural, functional, and dynamic properties of the cell membrane. Despite extensive research on ion-lipid interactions, the specific effects of ion binding on the polarity and hydration at the lipid/water interface remain poorly understood. This study explores the influence of three biologically relevant divalent cations─Mg, Ca, and Zn─on the depth-dependent interfacial polarity and hydration of zwitterionic DPPC lipid in its gel phase at room temperature.

View Article and Find Full Text PDF

From Pseudocyclic to Macrocyclic Ionophores: Strategies toward the Synthesis of Cyclic Monensin Derivatives.

J Org Chem

January 2025

Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.

There has been a long search for a simple preparation of new cyclic analogues of ionophore antibiotics. We report a simple and general synthesis of three new cyclic derivatives of polyether ionophore, monensin A (MON). The application of the Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes to macrocyclization results in a concise, synthetic route to monensin lacton or lactam in only 4 steps.

View Article and Find Full Text PDF

Surpassing protein specificity in biomimetics of bacterial amyloids.

Int J Biol Macromol

January 2025

Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Research Institute Sant Pau (IR Sant Pau), Barcelona, Spain. Electronic address:

In nature, nontoxic protein amyloids serve as dynamic, protein-specific depots, exemplified by both bacterial inclusion bodies and secretory granules from the endocrine system. Inspired by these systems, chemically defined and regulatory-compliant artificial protein microgranules have been developed for clinical applications as endocrine-like protein repositories. This has been achieved by exploiting the reversible coordination between histidine residues and divalent cations such as Zn, that promotes protein-protein interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!