The object of this study was to create a database for the biomechanical and certain functional anatomical parameters of the deer spine, for comparison with the human spine. This was done with a view toward using the deer spine as an alternative model for various biomechanical experiments, as it is difficult to procure nonembalmed, fresh human spine specimens. Bovine spongiform encephalopathy (BSE) and its human variant, Creutzfeld Jakob disease (CJD), prevent us from using bovine and sheep spine. There is a risk of transmission of disease through direct inoculation to the researcher working with infected bovine or sheep spine, and a theoretical possibility of transmission through the food chain if proper precautions for specimen disposal are not taken. We chose deer spine as an alternative for testing nonembalmed fresh human spine because, to date, there have been no reported cases of deer being carriers of prion diseases. Fifteen deer spine specimens were sectioned appropriately to obtain six functional spinal units for each level in the thoracic and lumbar spine. Each unit was tested in a Dartec materials testing machine (Dartec Ltd., Stourbridge, UK) under pure moments in three main anatomical planes. The range of motion (ROM), neutral zone (NZ), and stiffness parameters of the functional unit were determined in flexion-extension, right/left lateral bending, and axial rotation. The data obtained were compared with the corresponding human spine data in the literature. Deer spine specimens were also studied for bone mineral density (BMD) using a DEXA scan. The results revealed the overall ROM was greater for deer spine compared to the human spine in the upper thoracic region, but less compared to human spine in the lower lumbar spine region. The only comparable region for ROM was in the lower thoracic/upper lumbar region. The stiffness coefficients were also comparable in this region. The BMD was also comparable in the two species. We conclude that the lower thoracic/upper lumbar region in the deer spine can be used as a model for some human biomechanical experiments because of its biomechanical and material similarities to the human spine of the corresponding region.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.10041DOI Listing

Publication Analysis

Top Keywords

deer spine
32
human spine
28
spine
19
spine specimens
12
human
10
deer
9
model human
8
spine alternative
8
biomechanical experiments
8
nonembalmed fresh
8

Similar Publications

Background: Pain medicine care has expanded to encompass a wider range of conditions, necessitating updated education and training for pain specialists to utilize emerging technologies effectively. A national survey was conducted through several verified Pain organizations regarding pain physician employers' perspectives on pain medicine fellowship training and education. The survey aimed to gather insights from a diverse range of geographic locations, practice types (academic and private practice), and practice settings.

View Article and Find Full Text PDF

Objective: To systematically examine the literature on the clinical consequences of inadvertent delays in scheduled onabotulinumtoxin A (OTA) therapy for chronic migraine during the COVID-19 pandemic and assess recommendations when access to OTA is limited.

Background: The coronavirus (COVID-19) pandemic was unprecedented in its impact on the global medical community. Most healthcare institutions in the United States (US) and the world had begun significantly limiting elective procedures, undermining management of many debilitating chronic conditions.

View Article and Find Full Text PDF

Pain serves as a vital innate defense mechanism that can significantly impact an individual's quality of life. Understanding the physiological effects of pain well plays an important role in developing novel pain treatments. Nociceptor neurons play a key role in pain and inflammation.

View Article and Find Full Text PDF

High-quality sika deer omics data and integrative analysis reveal genic and cellular regulation of antler regeneration.

Genome Res

January 2025

New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China;

Article Synopsis
  • * Researchers sequenced the sika deer genome and analyzed gene expression and chromatin accessibility to identify key transcription factors involved in antler regeneration.
  • * A new model, cTOP, was developed to integrate various data types, revealing critical factors for stem cell activation and differentiation during the regeneration process.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!