Induction and expression of long-term potentiation (LTP) in area CA1 of the hippocampus require the coordinated regulation of several cellular processes. We found that LTP in area CA1 was associated with an N-methyl-D-aspartate (NMDA) receptor-dependent increase in glutamate uptake. The increase in glutamate uptake was inhibited by either removal of Na+ or addition of D,L-threo-beta-hydroxyaspartate. Dihydrokainate (DHK), a specific inhibitor of the glial glutamate transporter GLT-1, did not block the increase in glutamate uptake. LTP was also associated with a translocation of the EAAC1 glutamate transporter from the cytosol to the plasma membrane. Contextual fear conditioning increased the maximum rate (Vmax) of glutamate uptake and membrane expression of EAAC1 in area CA1. These results indicate that regulation of glutamate uptake may be important for maintaining the level of synaptic strength during long-term changes in synaptic efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nn791DOI Listing

Publication Analysis

Top Keywords

glutamate uptake
24
area ca1
12
increase glutamate
12
long-term potentiation
8
contextual fear
8
fear conditioning
8
glutamate
8
ltp area
8
glutamate transporter
8
uptake
6

Similar Publications

Background: PSMA PET/CT emerges as a pivotal technology in the diagnostic landscape of prostate cancer (PCa). It offers a suite of imaging interpretation criteria, notably the maximum standardized uptake value (SUVmax), the molecular imaging prostate-specific membrane antigen score (miPSMA score), and the PSMA reporting and data system (PSMA-RADS). Identifying the most valuable criteria for diagnosing PCa and standardizing imaging interpretation across various tracers is an unresolved question.

View Article and Find Full Text PDF

Tumour cell immune infiltration is linked to spindle pole component 25 (SPC25). The purpose of this work was to examine the function and molecular mechanism of SPC25 in immune escape in lung adenocarcinoma (LUAD). SPC25 expression in LUAD was examined using The Cancer Genome Atlas (TCGA) database, and RT-qPCR was used to confirm the results.

View Article and Find Full Text PDF

Positron-emission tomography (PET) offers high sensitivity for cancer diagnosis. However, small-molecule-based probes often exhibit insufficient accumulation in tumor sites, while nanoparticle-based agents typically have limited delivery efficiency. To address this challenge, this study proposes a novel PET imaging probe, Ga-CBT-PSMA, designed for prostate cancer.

View Article and Find Full Text PDF

Background: Current diagnostic imaging modalities have limited ability to differentiate between malignant and benign pancreaticobiliary disease, and lack accuracy in detecting lymph node metastases. F-Prostate-Specific Membrane Antigen (PSMA) PET/CT is an imaging modality used for staging of prostate cancer, but has incidentally also identified PSMA-avid pancreatic lesions, histologically characterized as pancreatic ductal adenocarcinoma (PDAC). This phase I/II study aimed to assess the feasibility of F-PSMA PET/CT to detect PDAC.

View Article and Find Full Text PDF

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!