A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

P2 receptor-mediated afferent arteriolar vasoconstriction during calcium blockade. | LitMetric

P2 receptor-mediated afferent arteriolar vasoconstriction during calcium blockade.

Am J Physiol Renal Physiol

Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.

Published: February 2002

Experiments were performed to determine the role of L-type calcium channels on the afferent arteriolar vasoconstrictor response to ATP and UTP. With the use of the blood-perfused juxtamedullary nephron technique, kidneys were perfused at 110 mmHg and the responses of arterioles to alpha,beta-methylene ATP, ATP, and UTP were determined before and during calcium channel blockade with diltiazem. alpha,beta-Methylene ATP (1.0 microM) decreased arteriolar diameter by 8 +/- 1% under control conditions. This response was abolished during calcium channel blockade. In contrast, 10 microM UTP reduced afferent arteriolar diameter to a similar degree before (20 +/- 4%) and during (14 +/- 4%) diltiazem treatment. Additionally, diltiazem completely prevented the vasoconstriction normally observed with ATP concentrations below 10 microM and attenuated the response obtained with 10 microM ATP. These data demonstrate that L-type calcium channels play a significant role in the vasoconstrictor influences of alpha,beta-methylene ATP and ATP but not UTP. The data also suggest that other calcium influx pathways may participate in the vasoconstrictor response evoked by P2 receptor activation. These observations support previous findings that UTP-mediated elevation of intracellular calcium concentration in preglomerular vascular smooth muscle cells relies primarily on calcium release from intracellular pools, whereas ATP-mediated responses involve both voltage-dependent calcium influx, through L-type calcium channels, and the release of calcium from intracellular stores. These results support the argument that P2X and P2Y receptors influence the diameter of afferent arterioles through activation of disparate signal transduction mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.0038.2001DOI Listing

Publication Analysis

Top Keywords

afferent arteriolar
12
l-type calcium
12
calcium channels
12
atp utp
12
alphabeta-methylene atp
12
calcium
11
vasoconstrictor response
8
atp
8
atp atp
8
calcium channel
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!