Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gastric proteolysis is assumed to be low in the newborn (Britton & Koldovsky 1989). Postprandial pepsin output is significantly lower in preterm infants than adults, 589 vs. 3352U/kg, respectively (Armand et al. 1995, 1996). We now report on gastric proteolysis in preterm infants (gestation age, 29 weeks; postnatal age, 5-6 weeks) gavage-fed mother's milk or preemie formula. The data show that a) the nonprotein component is higher in human milk than formula, b) net proteolysis amounts to 15% of protein, c) gastric proteolysis is lower than lipolysis and, contrary to the latter, is not enhanced by milk feeding (Armand et al. 1996). We suggest that stomach pH, enzyme output, and food structure are the reasons for differences in gastric digestion of protein and fat in infants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4615-1371-1_50 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!