CO(2) partial pressure (pCO(2)) in industrial cell culture reactors may reach 150-200 mm Hg, which can significantly inhibit cell growth and recombinant protein production. The inhibitory effects of elevated pCO(2) at constant pH are due to a combination of the increases in pCO(2) and [HCO(-) (3)], per se, and the associated increase in osmolality. To decouple the effects of pCO(2) and osmolality, low-salt basal media have been used to compensate for this associated increase in osmolality. Under control conditions (40 mm Hg-320 mOsm/kg), hybridoma cell growth and metabolism was similar in DMEM:F12 with 2% fetal bovine serum and serum-free HB GRO. In both media, pCO(2) and osmolality made dose-dependent contributions to the inhibition of hybridoma cell growth and synergized to more extensively inhibit growth when combined. Elevated osmolality was associated with increased apoptosis. In contrast, elevated pCO(2) did not increase apoptotic cell death. Specific antibody production also increased with osmolality although not with pCO(2). In an effort to understand the mechanisms through which elevated pCO(2) and osmolality affect hybridoma cells, glucose metabolism, glutamine metabolism, intracellular pH (pHi), and cell size were monitored in batch cultures. Elevated pCO(2) (with or without osmolality compensation) inhibited glycolysis in a dose-dependent fashion in both media. Osmolality had little effect on glycolysis. On the other hand, elevated pCO(2) alone had no effect on glutamine metabolism, whereas elevated osmolality increased glutamine uptake. Hybridoma mean pHi was approximately 0.2 pH units lower than control at 140 mm Hg pCO(2) (with or without osmolality compensation) but further increases in pCO(2) did not further decrease pHi. Osmolality had little effect on pHi. Cell size was smaller than control at elevated pCO(2) at 320 mOsm/kg, and greater than control in hyperosmotic conditions at 40 mm Hg.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.10176 | DOI Listing |
Front Mol Biosci
January 2025
Research Department, Children's Cancer Hospital Egypt, Cairo, Egypt.
Introduction: COVID-19 severity and high in-hospital mortality are often associated with severe hypoxemia, hyperlactatemia, and acidosis, yet the key players driving this association remain unclear. It is generally assumed that organ damage causes toxic acidosis, but since neutrophil numbers in severe COVID-19 can exceed 80% of the total circulating leukocytes, we asked if metabolic acidosis mediated by the glycolytic neutrophils is associated with lung damage and impaired oxygen delivery in critically ill patients.
Methods: Based on prospective mortality outcome, critically ill COVID-19 patients were divided into ICU- survivors and ICU-non-survivors.
Physiol Meas
January 2025
State Key Laboratory of Complex Severe and Rare Disease, Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
Prone positioning has been established as a therapeutic strategy for severe acute respiratory distress syndrome (ARDS). In COVID-19-associated ARDS (CARDS), the application of prone position has shown varying responses, influenced by factors such as lung recruitability and SARS-CoV-2-induced pulmonary endothelial dysfunction. This study aimed to compare the early impact of pronation on lung ventilation-perfusion matching (VQmatch) in CARDS and non-COVID-19 ARDS patients (non-CARDS).
View Article and Find Full Text PDFJ Fish Biol
January 2025
Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon (INPA), Manaus, Brazil.
The tambaqui (Colossoma macropomum, G. Cuvier 1818) thrives both in the ion-poor waters of the Amazon and in commercial aquaculture. In both, environmental conditions can be harsh due to low ion levels, occasional high salt challenges (in aquaculture), low pH, extreme PO levels (hypoxia and hyperoxia), high PCO levels (hypercapnia), high ammonia levels (in aquaculture), and high and low temperatures.
View Article and Find Full Text PDFExp Physiol
January 2025
Department of Biology, Mount Royal University, Calgary, AB, Canada.
Cerebrovascular regulation is critically dependent upon the arterial partial pressure of carbon dioxide ( ), owing to its effect on cerebral blood flow, tissue , tissue proton concentration, cerebral metabolism and cognitive and neuronal function. In normal environments and in the absence of pathology, at least over acute time frames, hypercapnia is usually managed readily via the respiratory chemoreflex arcs and/or acid-base buffering capacity, such that there is minimal impact on cerebrovascular and neurological function. However, in non-normal environments, such as enclosed spaces, or with pathology, extended exposures to elevations in can be detrimental to cerebral health.
View Article and Find Full Text PDFWater Res
December 2024
Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé, building 1131, DK-8000, Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and implementation, Middle East Technical University, Ankara, 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
Terrestrial dissolved organic matter (DOM) is potentially reactive and, upon entering lake ecosystems, can be readily degraded to low-molecular-weight organic matter and dissolved CO. However, to date, there has been limited research on the links between long-term variation in the composition of DOM and CO emissions from lakes. Lake Taihu is a large, shallow, and hyper-eutrophic lake where DOM composition is strongly influenced by inputs from the rivers draining cultivated and urbanized landscapes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!