The enzymes mannuronan C-5 epimerases catalyze conversion of beta-D-mannuronic acid to alpha-L-guluronic acid in alginates at the polymer level and thereby introduce sequences that have functional properties relevant to gelation. The enzymatic conversion by recombinant mannuronan C-5 epimerases AlgE4 and AlgE2 on alginate type substrates with different degree of polymerization and initial low fraction of alpha-L-guluronic acid was investigated. Essentially no enzymatic activity was found for fractionated mannuronan oligomer substrates with an average degree of polymerization, DP(n), less than or equal 6, whereas increasing the DP(n) yielded increased epimerization activity. This indicates that these enzymes have an active site consisting of binding domains for consecutive residues that requires interaction with 7 or more consecutive residues to show enzymatic activity. The experimentally determined kinetics of the reaction, and the residue sequence arrangement introduced by the epimerization, were modeled using Monte Carlo simulation accounting for the various competing intrachain substrates and assuming either a processive mode of action or preferred attack. The comparison between experimental data and simulation results suggests that epimerization by AlgE4 is best described by a processive mode of action, whereas the mode of action of AlgE2 appears to be more difficult to determine.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.10017DOI Listing

Publication Analysis

Top Keywords

mode action
16
mannuronan c-5
12
c-5 epimerases
12
alpha-l-guluronic acid
8
degree polymerization
8
enzymatic activity
8
consecutive residues
8
processive mode
8
mode
4
action recombinant
4

Similar Publications

Epilepsy is a serious neurological disease that impacts all facets of a patient's life, including their socioeconomic situation. The failure to identify underlying epileptic signatures in their early stages might result in severe harm to the central nervous system (CNS) and permanent adverse changes to some organs. Therefore, numerous antiepileptic drugs (AEDs are frequently used to control and treat the frequency of seizures.

View Article and Find Full Text PDF

Grouping of chemicals has been proposed as a strategy to speed up the screening and identification of potential substances of concern among the broad chemical universe under REACH. Such grouping is usually based on shared structural features and should only be used for the prioritization objectives. However, additional considerations (as well as structural similarity) are needed, e.

View Article and Find Full Text PDF

Carbapenem-resistant Klebsiella pneumoniae poses a severe risk to global public health, necessitating the immediate development of novel therapeutic strategies. The current study aimed to investigate the effectiveness of the green algae Arthrospira maxima (commercially known as Spirulina) both in vitro and in vivo against carbapenem-resistant K. pneumoniae.

View Article and Find Full Text PDF

Hypermethylation of tumor suppressor genes is a hallmark of leukemia. The hypomethylating agent decitabine covalently binds, and degrades DNA (cytosine-5)-methyltransferase 1 (DNMT1). Structural similarities within DNA-binding domains of DNMT1, and the leukemic driver histone-lysine N-methyltransferase 2A (KMT2A) suggest that decitabine might also affect the latter.

View Article and Find Full Text PDF

In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including H-NMR, C-NMR, mass spectrometry, and IR spectroscopy. The synthesized compounds were assessed in vitro for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!