Brugada syndrome is an inherited cardiac disorder caused by mutations in the cardiac sodium channel gene, SCN5A, that leads to ventricular fibrillation and sudden death. This study reports the changes in functional expression and cellular localization of an SCN5A double mutant (R1232W/T1620M) recently discovered in patients with Brugada syndrome. Mutant and wild-type (WT) human heart sodium channels (hNa(v)1.5) were expressed in tsA201 cells in the presence of the beta(1)-auxiliary subunit. Patch-clamp experiments in whole-cell configuration were conducted to assess functional expression. Immunohistochemistry and confocal microscopy were used to determine the spatial distribution of either WT or mutant cardiac sodium channels. The results show an abolition of functional sodium channel expression of the hNa(v)1.5/R1232W/T1620M mutant in the tsA201 cells. A conservative positively charged mutant, hNa(v)1.5/R1232K/T1620M, produced functional channels. Immunofluorescent staining showed that the FLAG-tagged hNa(v)1.5/WT transfected into tsA201 cells was localized on the cell surface, whereas the FLAG-tagged hNa(v)1.5/R1232W/T1620M mutant was colocalized with calnexin within the endoplasmic reticulum (ER). These results indicate that a positively charged arginine or lysine residue at position 1232 in the double mutant is required for the proper transport and functional expression of the hNa(v)1.5 protein. These results support the concept that loss of function of the cardiac Na(+) channel is responsible for the Brugada syndrome. The full text of this article is available at http://www.circresaha.org.
Download full-text PDF |
Source |
---|
JACC Case Rep
January 2025
Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
Structural abnormalities within the right ventricular outflow tract (RVOT) can present similarly to Brugada syndrome. A 34-year-old woman with no medical history presented with polymorphic ventricular tachycardia/ventricular fibrillation cardiac arrest and initial electrocardiogram showed type I Brugada pattern. Cardiac magnetic resonance imaging revealed prominent tissue thickening at the RVOT with late gadolinium enhancement.
View Article and Find Full Text PDFJ Am Coll Cardiol
January 2025
Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Switzerland. Electronic address:
Acta Anaesthesiol Scand
February 2025
Department of Anesthesiology and perioperative medicine, University Hospital of Brussels, Free University of Brussels, Brussels, Belgium.
Background: The use of local anesthetics (LA) in individuals with Brugada syndrome (BrS) remains a subject of debate due to the lack of large-scale studies confirming their potential risks. This study primarily aimed to evaluate the incidence of new malignant arrhythmias or defibrillation events in patients diagnosed with BrS during the perioperative period, following the administration of local anesthetics, and within 30 days postoperatively. The secondary objective was to analyze the occurrence of adverse effects during hospitalization, as well as 30-day readmission and mortality rates.
View Article and Find Full Text PDFHeart Rhythm
January 2025
Dante Pazzanese Institute of Cardiology, Department of Electrophysiology, São Paulo, Brazil.
Background: Brugada syndrome (BrS) is a genetic heart disease that predisposes individuals to ventricular arrhythmias and sudden cardiac death. Although implantable cardioverter-defibrillators (ICDs) and quinidine are primary treatments, recurrent BrS-triggered ventricular arrhythmias can persist. In this setting, epicardial substrate ablation has emerged as a promising alternative for symptomatic patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!