Analysis of allelic loss in archival tumor specimens is constrained by quality and quantity of tissue and by technical limitations on the number of chromosomal sites that can be efficiently evaluated in conventional analyses using polymorphic microsatellite markers. Newly developed array-based assays have the potential to yield genome-wide data from small amounts of tissue but have not been validated for use with routinely processed specimens. We used the Affymetrix HuSNP assay, composed of 1494 single nucleotide polymorphism sites, to compare allelic loss results obtained from both formalin-fixed and frozen breast tissue samples. Tumor cells were separated from normal epithelia and nonepithelial cells by dissection and bivariate cytokeratin/DNA flow sorting; normal breast cells from the same patient served as constitutive normal. Allele results from the HuSNP array averaged 96% reproducibility between duplicates and were concordant between the fixed and frozen normal samples. We also analyzed DNA from the same samples after whole-genome amplification (primer extension preamplification). Although overall signal intensities were lower, the genotype data from the primer extension preamplification material was concordant with genomic DNA data from the same samples. Results from genomic normal tissue DNA averaged informative single nucleotide polymorphism at 379 (25%) loci genome-wide. Although data points were clustered and some segments of chromosomes were not informative, our data indicated that the Affymetrix HuSNP assay could provide an efficient and valid genome-wide analysis of allelic imbalance in routinely processed and whole genome-amplified pathology specimens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1867151PMC
http://dx.doi.org/10.1016/S0002-9440(10)64351-9DOI Listing

Publication Analysis

Top Keywords

single nucleotide
12
nucleotide polymorphism
12
analysis allelic
12
allelic loss
12
genome-wide data
8
routinely processed
8
affymetrix husnp
8
husnp assay
8
primer extension
8
extension preamplification
8

Similar Publications

The COVID-19 pandemic has underscored the importance of virus surveillance in public health and wastewater-based epidemiology (WBE) has emerged as a non-invasive, cost-effective method for monitoring SARS-CoV-2 and its variants at the community level. Unfortunately, current variant surveillance methods depend heavily on updated genomic databases with data derived from clinical samples, which can become less sensitive and representative as clinical testing and sequencing efforts decline.In this paper, we introduce HERCULES (High-throughput Epidemiological Reconstruction and Clustering for Uncovering Lineages from Environmental SARS-CoV-2), an unsupervised method that uses long-read sequencing of a single 1 Kb fragment of the Spike gene.

View Article and Find Full Text PDF

scATAC-seq generates more accurate and complete regulatory maps than bulk ATAC-seq.

Sci Rep

January 2025

MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.

Bulk ATAC-seq assays have been used to map and profile the chromatin accessibility of regulatory elements such as enhancers, promoters, and insulators. This has provided great insight into the regulation of gene expression in many cell types in a variety of organisms. To date, ATAC-seq has most often been used to provide an average evaluation of chromatin accessibility in populations of cells.

View Article and Find Full Text PDF

Resolving the molecular basis of a Mendelian condition remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion and structural variant calling and diploid de novo genome assembly. This permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility and full-length transcript information in a single long-read sequencing run.

View Article and Find Full Text PDF

Marek's disease (MD), a T cell lymphoma disease in chickens, is caused by the Marek's disease virus (MDV) found ubiquitously in the poultry industry. Genetically resistant Line 6 (L6) and susceptible Line 7 (L7) chickens have been instrumental to research on avian immune system response to MDV infection. In this study we characterized molecular signatures unique to splenic immune cell types across different genetic backgrounds 6 days after infection.

View Article and Find Full Text PDF

A subgroup of patients with acute depression show an impaired regulation of the hypothalamic-pituitary-adrenocortical axis, which can be sensitively diagnosed with the combined dexamethasone (dex)/corticotropin releasing hormone (CRH)-test. This neuropathological alteration is assumed to be a result of hyperactive AVP/V1b signalling. Given the complicated procedure of the dex/CRH-test, this study aimed to develop a genetic variants-based alternative approach to predict the outcome of the dex/CRH-test in acute depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!