The cDNA sequences encoding three GnRH forms, sea bream GnRH (sbGnRH), salmon GnRH (sGnRH) and chicken GnRH II (cGnRH II), were cloned from the brain of European sea bass, Dicentrarchus labrax. Comparison of their deduced amino acid sequences to the same forms in the gilthead sea bream, Sparus aurata, and striped bass, Morone saxatilis, revealed high homology of the prepro-cGnRH II (94% and 98% respectively), and prepro-sGnRH (92% to both species). The sbGnRH exhibited dissimilar identities, with high homology to the striped bass (93%), and lower homology (59%) to the gilthead sea bream. Two transcript types were identified for the GnRH-associated peptide (GAP)-sGnRH as well as for the GAP-cGnRH II, which suggests a possible alternative splicing followed by the addition of an early stop codon. In order to obtain antibodies specific for the three GnRH precursors, recombinant GAP proteins were produced. The differential expression of the three GnRHs previously reported in the brain by means of in situ hybridization, using riboprobes corresponding to the GAP-coding regions, was fully confirmed by immunocytochemistry using antibodies raised against the recombinant GAP proteins, indicating that the transcripts are translated into functional proteins. Moreover, this approach allowed us to follow, for the first time, the specific projections of the different cell groups: sGAP fibers are distributed mainly in the forebrain with few projections reaching the pituitary, sbGAP fibers are mainly present in the preoptic area, mediobasal hypothalamus and predominantly project to the pars distalis of the pituitary, whereas cGnRH II fibers have a widespread distribution primarily in the posterior brain, and do not project to the pituitary. These new tools will be extremely useful to study further the development, regulation and functional significance of three independent GnRH systems in the brain of vertebrate species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1677/joe.0.1720105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!