Positron-Emission Tomography (PET) is an imaging technology currently used in drug development as a non-invasive measure of drug distribution and interaction with biochemical target system. The level of receptor occupancy achieved by a compound can be estimated by comparing time-activity measurements in an experiment done using tracer alone with the activity measured when the tracer is given following administration of unlabelled compound. The effective use of this surrogate marker as an enabling tool for drug development requires the definition of a model linking the brain receptor occupancy with the fluctuation of plasma concentrations. However, the predictive performance of such a model is strongly related to the precision on the estimate of receptor occupancy evaluated in PET scans collected at different times following drug treatment. Several methods have been proposed for the analysis and the quantification of the ligand-receptor interactions investigated from PET data. The aim of the present study is to evaluate alternative parameter estimation strategies based on the use of non-linear mixed effect models allowing to account for intra and inter-subject variability on the time-activity and for covariates potentially explaining this variability. A comparison of the different modeling approaches is presented using real data. The results of this comparison indicates that the mixed effect approach with a primary model partitioning the variance in term of Inter-Individual Variability (IIV) and Inter-Occasion Variability (IOV) and a second stage model relating the changes on binding potential to the dose of unlabelled drug is definitely the preferred approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0969-8051(01)00275-xDOI Listing

Publication Analysis

Top Keywords

receptor occupancy
16
brain receptor
8
pet imaging
8
drug development
8
drug
5
estimate time
4
time varying
4
varying brain
4
receptor
4
occupancy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!