In this paper we develop a novel discrete, individual-based mathematical model to investigate the effect of parasitoid foraging strategies on the spatial and temporal dynamics of host-parasitoid systems. The model is used to compare naïve or random search strategies with search strategies that depend on experience and sensitivity to semiochemicals in the environment. It focuses on simple mechanistic interactions between individual hosts, parasitoids, and an underlying field of a volatile semiochemical (emitted by the hosts during feeding) which acts as a chemoattractant for the parasitoids. The model addresses movement at different spatial scales, where scale of movement also depends on the internal state of an individual. Individual interactions between hosts and parasitoids are modelled at a discrete (micro-scale) level using probabilistic rules. The resulting within-generation dynamics produced by these interactions are then used to generate the population levels for successive generations. The model simulations examine the effect of various key parameters of the model on (i) the spatio-temporal patterns of hosts and parasitoids within generations; (ii) the population levels of the hosts and parasitoids between generations. Key results of the model simulations show that the following model parameters have an important effect on either the development of patchiness within generations or the stability/instability of the population levels between generations: (i) the rate of diffusion of the kairomones; (ii) the specific search strategy adopted by the parasitoids; (iii) the rate of host increase between successive generations. Finally, evolutionary aspects concerning competition between several parasitoid subpopulations adopting different search strategies are also examined.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jtbi.2001.2418DOI Listing

Publication Analysis

Top Keywords

hosts parasitoids
16
search strategies
12
population levels
12
host-parasitoid systems
8
parasitoid foraging
8
foraging strategies
8
successive generations
8
model simulations
8
parasitoids generations
8
model
7

Similar Publications

Similar host instar preferences by three sympatric parasitoids of (Coleoptera: Coccinellidae): potential host niche overlapping.

Bull Entomol Res

January 2025

Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan.

Parasitoids employ diverse oviposition strategies to enhance offspring survival and maximise fitness gains from hosts. Ladybird parasitoids, significant natural enemies of ladybirds, have the potential to disrupt biocontrol efforts, yet their biology and ecology remain poorly understood. This study investigated the host-parasitoid interaction among three sympatric larval endoparasitoids of (Coleoptera: Coccinellidae): (Hymenoptera: Encyrtidae), (Hymenoptera: Proctotrupidae) and (Hymenoptera: Eulophidae).

View Article and Find Full Text PDF

Fruit flies (Diptera: Tephritidae) are significant pests of fruit and vegetable crops worldwide. Despite their importance, some regions in South America remain under-researched regarding the fruit fly species that damage host plants and the parasitoids that provide their natural control. In this study, we investigated the interactions among host plants, fruit flies, and their larval parasitoids along two altitudinal gradients in Oxapampa, Pasco, a tropical Andean forest in Peru.

View Article and Find Full Text PDF

Background: The distribution of hosts and parasitoids across patches is a key factor determining the dynamics of host-parasitoid populations. To connect behavioral rules with population dynamics, it is essential to comprehend how individual-level dispersal behavior influences the distribution of individuals. Typically, a simple deterministic model has been used to describe this connection.

View Article and Find Full Text PDF

Defensive tactics: lessons from Drosophila.

Biol Open

December 2024

Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center,Lebanon, NH 03756, USA.

Parasitoid wasps exert strong selective pressure on their hosts, driving the evolution of diverse defense strategies. Drosophila, a widely studied model organism, hosts a wide range of parasites, including parasitoid wasps, and has evolved immune and behavioral mechanisms to mitigate the risk of parasitization. These defenses range from avoidance and evasion to post-infection immune responses, such as melanotic encapsulation.

View Article and Find Full Text PDF

The horizontal transmission of endosymbionts between hosts and parasitoids plays a crucial role in biological control, yet its mechanisms remain poorly understood. This study investigates the dynamics of horizontal transfer of (Ccep) from the rice moth, , to its parasitoid, . Through PCR detection and phylogenetic analysis, we demonstrated the presence of identical Ccep strains in both host and parasitoid populations, providing evidence for natural horizontal transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!