Modulatory mechanism of the endogenous peptide catestatin on neuronal nicotinic acetylcholine receptors and exocytosis.

J Neurosci

Departamento de Farmacologia and Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain.

Published: January 2002

AI Article Synopsis

  • Catestatin, a fragment of chromogranin A, is the first known natural inhibitor of catecholamine release by blocking activation of neuronal nicotinic acetylcholine receptors (nAChRs) across various species and cell types.
  • This study investigates catestatin's effects on nAChR subunit combinations and its role in regulating intracellular calcium levels and catecholamine release in adrenal chromaffin cells.
  • Results indicate that catestatin effectively blocks all nAChR subtypes tested, reducing intracellular calcium and catecholamine release without impacting the final stages of exocytosis, suggesting a complex regulatory role in neuroendocrine secretion based on the intensity of stimulation.

Article Abstract

The catestatin fragment of chromogranin A is the first known endogenous compound able to inhibit catecholamine release elicited by the activation of neuronal nicotinic acetylcholine receptors (nAChRs) of different animal species and catecholaminergic cell types. However, how catestatin regulates the receptor activity, which subunit combination of the heteropentameric forms of receptor is better blocked by the peptide, or how it affects the different stages of the exocytotic process have not yet been evaluated. To address these questions, we have assayed the effects of catestatin: (first) on the inward currents elicited by ACh (I(ACh)) in voltage-clamped oocytes expressing different combinations of nAChR subunits; and (second) on the cytosolic Ca2+ concentration, [Ca2+]c, and quantal release of catecholamines simultaneously monitored in single adrenal chromaffin cells stimulated with ACh. Catestatin potently blocks all the subtypes of nAChRs studied. Furthermore, it inhibits the alpha3beta4 current in a reversible, noncompetitive, voltage-, and use-dependent manner, a behavior compatible with open-channel blockade. In fura-2-loaded single chromaffin cells, the peptide reduced the [Ca2+]c signal and the total release of catecholamines elicited by ACh; however, catestatin did not modify the kinetics or the last step of the exocytotic process. Our results suggest that catestatin might play an autocrine regulatory role in neuroendocrine secretion through its interaction with different native nAChR subtypes; the extent of receptor blockade by the peptide could be acutely regulated by the intensity and duration of the presynaptic stimulus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6758662PMC
http://dx.doi.org/10.1523/JNEUROSCI.22-02-00377.2002DOI Listing

Publication Analysis

Top Keywords

neuronal nicotinic
8
nicotinic acetylcholine
8
acetylcholine receptors
8
exocytotic process
8
elicited ach
8
release catecholamines
8
chromaffin cells
8
ach catestatin
8
catestatin
7
modulatory mechanism
4

Similar Publications

The stoichiometry of the α4β2 neuronal nicotinic acetylcholine receptors determines the pharmacological properties of the neonicotinoids, and recently introduced butenolide and sulfoximine.

Neurotoxicology

January 2025

Laboratoire Physiologie, Ecologie and Environnement (P2E), Université d'Orléans, UR 1207, USC-INRAE 1328, 1 rue de Chartres, 45067 Orléans, France; Institut Universitaire de France (IUF), 1 rue Descartes 75005 Paris, France. Electronic address:

Although neonicotinoids were considered safe for mammals for many decades, recent research has proven that these insecticides can alter cholinergic functions by interacting with neuronal nicotinic acetylcholine (ACh) receptors (nAChRs). One such receptor is the heteromeric α4β2 nAChR, which exists under two different stoichiometries: high sensitivity and low sensitivity α4β2 nAChRs. To replace these insecticides, new classes of insecticides have been developed, such as, sulfoximine, sulfoxaflor, and the butanolide, flupyradifurone.

View Article and Find Full Text PDF

Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.

ACS Chem Neurosci

January 2025

Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.

Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.

View Article and Find Full Text PDF

Objectives: The current gold standard for immunofluorescent (IF) visualization of neuromuscular junctions (NMJs) in muscle utilizes frozen tissue sections with fluorescent conjugated antibodies to demarcate neurons and IF alpha-bungarotoxin (α-BTX) to demarcate motor endplates. Frozen tissue sectioning comes with inherent inescapable limitations, including cryosectioning artifact and limited sample shelf-life. However, a parallel approach to identify NMJs in paraffin-embedded tissue sections has not been previously described.

View Article and Find Full Text PDF

Background: R-Glabridin is a major flavonoid of licorice (Glycyrrhiza glabra) root and known to modulate GABAA receptors, which are targets of many clinical hypnotics. However, R-glabridin hypnotic activity has not been reported in animals.

Methods: Inverted photomotor responses (IPMRs) were used to assess the hypnotic effects of natural R-glabridin and synthetic R/S-glabridin in wild-type zebrafish larvae and transgenic larvae lacking functional GABAA receptor β3 subunits (β30/0).

View Article and Find Full Text PDF

Galantamine-Memantine Combination in the Treatment of Parkinson's Disease Dementia.

Brain Sci

November 2024

Department of Public Safety and Correctional Services, Baltimore, MD 21215, USA.

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects over 1% of population over age 60. It is defined by motor and nonmotor symptoms including a spectrum of cognitive impairments known as Parkinson's disease dementia (PDD). Currently, the only US Food and Drug Administration-approved treatment for PDD is rivastigmine, which inhibits acetylcholinesterase and butyrylcholinesterase increasing the level of acetylcholine in the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!