Conjugate and vergence oscillations during saccades and gaze shifts: implications for integrated control of binocular movement.

J Neurophysiol

Aerospace Medical Research Unit, Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada.

Published: January 2002

Saccades made between targets at optical infinity require both eyes to rotate by the same angle. Nevertheless, these saccades are consistently accompanied by transient vergence eye movements. Here we have investigated whether the dynamics of these vergence movements depend on the trajectory of the coincident conjugate movement, and whether moving the head during eye-head gaze shifts modifies vergence dynamics. In agreement with previous reports, saccades with more symmetric (i.e., "bell-shaped") conjugate velocity profiles were accompanied by stereotyped biphasic vergence transients (i.e., a divergence phase immediately followed by a convergence phase). However, we found that saccades with more asymmetric, oscillatory-like dynamics (characterized by a typical conjugate reacceleration of the eyes following the initial peak velocity) were systematically accompanied by more complex vergence movements that also exhibited oscillatory-like dynamics. These findings could be extended to conditions where the head was free to move: comparable conjugate and vergence oscillations were observed during head-restrained saccades and combined eye-head gaze shifts. The duration of the vergence oscillation increased with gaze shift amplitude, such that as many as four vergence phases (divergence-convergence-divergence-convergence) were recorded during 55 degrees gaze shifts (approximately 240 ms). To quantify these observations, we first determined whether conjugate and vergence peak velocities were systematically correlated. Conjugate peak velocity was linearly related to the peak velocity of the initial divergence phase for saccades and gaze shifts of all amplitudes, regardless of their dynamics. However, for more asymmetric saccades and gaze shifts, the subsequent convergence and divergence peak velocities were not correlated with either the initial peak conjugate velocity or the peak velocity of the conjugate reacceleration. Next, we determined that the duration of the different conjugate and vergence oscillation phases remained relatively constant across all saccades and gaze shifts, and that the conjugate and vergence profiles oscillated together at approximately 7.5-10 Hz. Using computer simulations, we show that a classic feed-forward model is unable to reproduce vergence oscillations based solely on peripheral mechanisms. Furthermore, we demonstrate that small modifications to the gain and delay of a simple feedback model for saccade generation can generate conjugate oscillations, and propose that such changes reflect the influence of lowered alertness on the tecto-reticular pathways. We conclude that peripheral mechanisms can only account for the initial divergence that accompanies all saccades, and that the conjugate and vergence oscillations observed during asymmetric movements arise centrally from an integrative binocular controller.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00919.2000DOI Listing

Publication Analysis

Top Keywords

gaze shifts
28
conjugate vergence
24
vergence oscillations
16
saccades gaze
16
peak velocity
16
conjugate
13
vergence
13
saccades
10
gaze
8
vergence movements
8

Similar Publications

Entrainment of visuomotor responses to target speed during interception.

Neuroscience

January 2025

Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Mexico; Laboratorio de Conducta Animal, Departamento de Psicología, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Mexico.

Motor actions adapt dynamically to external changes through the brain's ability to predict sensory outcomes and adjust for discrepancies between anticipated and actual sensory inputs. In this study, we investigated how changes in target speed (v) and direction influenced visuomotor responses, focusing on gaze and manual joystick control during an interception task. Participants tracked a moving target with sinusoidal variations in v and directional changes, generating sensory prediction errors and requiring real-time adjustments.

View Article and Find Full Text PDF

Background: Involution or aging is the most common cause of lower eyelid entropion (in-turning of eyelid margin) in the elderly population. Various pathomechanisms have been postulated for its occurrence. Aging leads to laxity of tissues and loss of muscle tone.

View Article and Find Full Text PDF

Purpose: The optic nerve (ON) is mechanically perturbed by eye movements that shift cerebrospinal fluid (CSF) within its surrounding dural sheath. This study compared changes in ON length and CSF volume within the intraorbital ON sheath caused by eye movements in healthy subjects and patients with optic neuropathies.

Methods: Twenty-one healthy controls were compared with 11 patients having primary open angle glaucoma (POAG) at normal intraocular pressure (IOP), and 11 with chronic non-arteritic anterior ischemic optic neuropathy (NA-AION).

View Article and Find Full Text PDF

How are arbitrary sequences of verbal information retained and manipulated in working memory? Increasing evidence suggests that serial order in verbal WM is spatially coded and that spatial attention is involved in access and retrieval. Based on the idea that brain areas controlling spatial attention are also involved in oculomotor control, we used eye tracking to reveal how the spatial structure of serial order information is accessed in verbal working memory. In two experiments, participants memorized a sequence of auditory words in the correct order.

View Article and Find Full Text PDF

While the content of subjective (personal) experience is inaccessible to external observers, behavioral proxies can frame the nature of that experience and suggest its cognitive requirements. Directed attention is widely recognized as a feature of animal awareness. This descriptive study used the frequency of gaze shifts in lizards and birds as an indicator of the rate at which the animals change the perceptual segmentation of their ongoing experience.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!