Differential role of KIR channel and Na(+)/K(+)-pump in the regulation of extracellular K(+) in rat hippocampus.

J Neurophysiol

Department of Neurological Surgery, University of Washington, School of Medicine, Harborview Medical Center, Seattle, Washington 98104, USA.

Published: January 2002

Little information is available on the specific roles of different cellular mechanisms involved in extracellular K(+) homeostasis during neuronal activity in situ. These studies have been hampered by the lack of an adequate experimental paradigm able to separate K(+)-buffering activity from the superimposed extrusion of K(+) from variably active neurons. We have devised a new protocol that allows for such an analysis. We used paired field- and K(+)-selective microelectrode recordings from CA3 stratum pyramidale during maximal Schaffer collateral stimulation in the presence of excitatory synapse blockade to evoke purely antidromic spikes in CA3. Under these conditions of controlled neuronal firing, we studied the [K(+)]o baseline during 0.05 Hz stimulation, and the accumulation and rate of recovery of extracellular K(+) at higher frequency stimulation (1-3 Hz). In the first set of experiments, we showed that neuronal hyperpolarization by extracellular application of ZD7288 (11 microM), a selective blocker of neuronal I(h) currents, does not affect the dynamics of extracellular K(+). This indicates that the K(+) dynamics evoked by controlled pyramidal cell firing do not depend on neuronal membrane potential, but only on the balance between K(+) extruded by firing neurons and K(+) buffered by neuronal and glial mechanisms. In the second set of experiments, we showed that di-hydro-ouabain (5 microM), a selective blocker of the Na(+)/K(+)-pump, yields an elevation of baseline [K(+)]o and abolishes the K(+) recovery during higher frequency stimulation and its undershoot during the ensuing period. In the third set of experiments, we showed that Ba(2+) (200 microM), a selective blocker of inwardly rectifying K(+) channels (KIR), does not affect the posttetanus rate of recovery of [K(+)]o, nor does it affect the rate of K(+) recovery during high-frequency stimulation. It does, however, cause an elevation of baseline [K(+)]o and an increase in the amplitude of the ensuing undershoot. We show for the first time that it is possible to differentiate the specific roles of Na(+)/K(+)-pump and KIR channels in buffering extracellular K(+). Neuronal and glial Na(+)/K(+)-pumps are involved in setting baseline [K(+)]o levels, determining the rate of its recovery during sustained high-frequency firing, and determining its postactivity undershoot. Conversely, glial KIR channels are involved in the regulation of baseline levels of K(+), and in decreasing the amplitude of the postactivity [K(+)]o undershoot, but do not affect the rate of K(+) clearance during neuronal firing. The results presented provide new insights into the specific physiological role of glial KIR channels in extracellular K(+) homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00240.2001DOI Listing

Publication Analysis

Top Keywords

rate recovery
16
set experiments
12
microm selective
12
selective blocker
12
baseline [k+]o
12
kir channels
12
specific roles
8
extracellular homeostasis
8
neuronal
8
neuronal firing
8

Similar Publications

Acute pancreatitis (AP) is a life-threatening condition, with a higher mortality rate in men than women and in which estrogens might play a protective role. This study aimed to investigate sex-dependent differences in a mouse model of caerulein-induced AP. Thirty-six C57BL/6J mice (19 females and 17 males) were treated intraperitoneally with phosphate-buffered saline or caerulein, and sacrificed 12 hours, 2 days, or 7 days after the last injection.

View Article and Find Full Text PDF

As a low-energy method to increase the data rate of optical links in data centers, we propose self-homodyne Nyquist optical time division multiplexing (OTDM). In Nyquist OTDM, spectrally efficient high-baud rate signals can be generated exceeding the limit of electronic signal processing. However, full integration of OTDM systems has not been reported, mainly because of the complicated signal detection scheme, which involves demultiplexing and clock recovery.

View Article and Find Full Text PDF

In this paper, a high-power UV-pumped BBO optical parametric oscillator (OPO) is presented by increasing the working temperature of the nonlinear crystal to fasten the color center recovery speed and further decrease the color center density. When the working temperature of the BBO crystal was experimentally increased from 135 °C to 185 °C, the output power was scaled up from 1.20 W to 2.

View Article and Find Full Text PDF

Orbital angular momentum (OAM) multiplexing is emerging as a critical technique for achieving high data capacity in underwater wireless optical communications (UWOC). Nonetheless, wavefront distortions induced by underwater turbulence compromise the orthogonality of OAM modes. In this paper, we introduce a physics-driven untrained learning approach for adaptive optics that operates independently of extensive amplitude datasets.

View Article and Find Full Text PDF

Toward Developing Alternative Opioid Antagonists for Treating Community Overdose: A Model-Based Evaluation of Important Pharmacological Attributes.

Clin Pharmacol Ther

January 2025

Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food & Drug Administration, Silver Spring, Maryland, USA.

In response to increased illicit use of synthetic opioids, various μ-receptor antagonist formulations, with varied pharmacological characteristics, have been and are being developed. To understand how pharmacologic characteristics such as absorption rate and clearance rate affect reversal in treating community opioid overdose, we used our previously published translational opioid model. We adapted this model with in vitro receptor binding data and clinical pharmacokinetic data of three intranasal nalmefene formulations along with an intranasal naloxone formulation to study the reversal of fentanyl and carfentanil-induced respiratory depression in chronic opioid users.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!