A monoclonal antibody to excitatory amino acid transporter 1 (EAAT1) has been generated which robustly stains paraffin-embedded, formaldehyde-fixed as well as snap-frozen human post-mortem brain tissue. We have used this antibody to map the distribution of EAAT1 throughout normal human CNS tissue. In addition this antibody has been used to perform a semi-quantitative immunohistochemical analysis of the expression of EAAT1 in motor cortex and cervical cord tissue taken from motor neurone disease cases (n=17) and neurologically normal controls (n=12). By comparing the relative optical density measurements of identical regions of motor cortex and cervical spinal cord an increase in the expression levels of EAAT1 was observed in motor neurone disease tissue compared to the control tissue and in both motor cortex and cervical spinal cord (9-17% and 13-33% increases respectively). EAAT1 was observed to be the most abundant transporter in more "caudal" brain regions such as the diencephalon and brainstem and its expression in other regions was frequently more uniform than that of EAAT2. In the motor cortex, EAAT1 immunoreactivity was present in all grey matter laminae, with some staining of individual astrocytes in the white matter. In spinal cord, EAAT1 immunoreactivity was strongest in the substantia gelatinosa. In the ventral horn, motor neurones were surrounded with a dense rim of perisomatic EAAT1 immunoreactivity, and the neuropil showed diffuse staining. Additional studies using double-labelling immunocytochemistry demonstrated that astrocytic co-localisation of EAAT1 and EAAT2 may occasionally be seen, but was not widespread in the human CNS and that in general astrocytes were positive for either EAAT1 or EAAT2. These results demonstrate that the EAAT1 has a widespread abundance throughout all regions of the human CNS examined and that there exist discrete populations of astrocytes that are positive solely for either EAAT1 or EAAT2. Furthermore, there is evidence to suggest that altered EAAT1 expression in motor neurone disease follows a different pattern to the reported changes of EAAT2 expression in this condition, indicating that the role of glutamate transporters in the pathogenesis of motor neurone disease appears more complex than previously appreciated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0306-4522(01)00437-7DOI Listing

Publication Analysis

Top Keywords

motor neurone
20
neurone disease
20
human cns
16
motor cortex
16
eaat1
14
cortex cervical
12
spinal cord
12
eaat1 immunoreactivity
12
eaat1 eaat2
12
motor
10

Similar Publications

Objective: Approximately 20% of familial cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Epidemiological data have identified traumatic brain injury (TBI) as an exogenous risk factor for ALS; however, the mechanisms by which TBI may worsen SOD1 ALS remain largely undefined.

Methods: We sought to determine whether repetitive TBI (rTBI) accelerates disease onset and progression in the transgenic SOD1 mouse ALS model, and whether loss of the primary regulator of axonal degeneration sterile alpha and TIR motif containing 1 (Sarm1) mitigates the histological and behavioral pathophysiology.

View Article and Find Full Text PDF

Background: White matter hyperintensities (WMH) are prominent neuroimaging markers of cerebral small vessel disease (CSVD) linked to cognitive decline. Nevertheless, the pathophysiological mechanisms underlying WMH remain unclear.

Objective: This study aimed to assess the structural decoupling index (SDI) as a novel metric for quantifying the brain's hierarchical organization associated with WMH in cognitively normal older adults

Methods: We analyzed data from 112 cognitively normal individuals with varying WMH burdens (43 high WMH burden and 69 low WMH burden).

View Article and Find Full Text PDF

Edaravone Improves Motor Dysfunction Following Brachial Plexus Avulsion Injury in Rats.

ACS Chem Neurosci

January 2025

Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.

Brachial plexus root avulsion (BPRA) is often caused by road collisions, leading to total loss of motor function in the upper limb. At present, effective treatment options remain limited. Edaravone (EDA), a substance that eliminates free radicals, exhibits numerous biological properties, including neuroprotective, antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Previous research has confirmed that isofraxidin can reduce macrophage expression and inhibit peripheral inflammation. However, its effects on the central nervous system remain underexplored.

View Article and Find Full Text PDF

Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly progressive than amyotrophic laterals sclerosis (ALS). `Classical` ALS is characterized by catabolism and abnormal energy metabolism preceding onset of motor symptoms, and previous studies indicated that the disease progression of ALS involves hypothalamic atrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!